MySQL三大日志(binlog、redo log和undo log)详解

MySQL三大日志(binlog、redo log和undo log)详解

MySQL 日志 主要包括错误日志、查询日志、慢查询日志、事务日志、二进制日志几大类。其中,比较重要的还要属二进制日志 binlog(归档日志)和事务日志 redo log(重做日志)和 undo log(回滚日志)。

redo log【持久性:D】

redo log(重做日志)是InnoDB存储引擎独有的,它让MySQL拥有了崩溃恢复能力
比如 MySQL 实例挂了或宕机了,重启时,InnoDB存储引擎会使用redo log恢复数据,保证数据的持久性与完整性。

MySQL 中数据是以页为单位,你查询一条记录,会从硬盘把一页的数据加载出来,加载出来的数据叫数据页,会放入到 Buffer Pool 中。
后续的查询都是先从 Buffer Pool 中找,没有命中再去硬盘加载,减少硬盘 IO 开销,提升性能。
更新表数据的时候,也是如此,发现 Buffer Pool 里存在要更新的数据,就直接在 Buffer Pool 里更新。
然后会把“在某个数据页上做了什么修改”记录到重做日志缓存(redo log buffer)里,接着刷盘到 redo log 文件里。

理想情况,事务一提交就会进行刷盘操作,但实际上,刷盘的时机是根据策略来进行的。

# 小贴士:每条 redo 记录由“表空间号+数据页号+偏移量+修改数据长度+具体修改的数据”组成

刷盘时机

InnoDB 刷新重做日志的时机有几种情况:

  1. 事务提交:当事务提交时,log buffer 里的 redo log 会被刷新到磁盘(可以通过innodb_flush_log_at_trx_commit参数控制,后文会提到)。
  2. log buffer 空间不足时:log buffer 中缓存的 redo log 已经占满了 log buffer 总容量的大约一半左右,就需要把这些日志刷新到磁盘上。
  3. 事务日志缓冲区满:InnoDB 使用一个事务日志缓冲区(transaction log buffer)来暂时存储事务的重做日志条目。当缓冲区满时,会触发日志的刷新,将日志写入磁盘。
  4. Checkpoint(检查点):InnoDB 定期会执行检查点操作,将内存中的脏数据(已修改但尚未写入磁盘的数据)刷新到磁盘,并且会将相应的重做日志一同刷新,以确保数据的一致性。
  5. 后台刷新线程:InnoDB 启动了一个后台线程,负责周期性(每隔 1 秒)地将脏页(已修改但尚未写入磁盘的数据页)刷新到磁盘,并将相关的重做日志一同刷新。
  6. 正常关闭服务器:MySQL 关闭的时候,redo log 都会刷入到磁盘里去。
    我们要注意设置正确的刷盘策略innodb_flush_log_at_trx_commit 。根据 MySQL 配置的刷盘策略的不同,MySQL 宕机之后可能会存在轻微的数据丢失问题。
    innodb_flush_log_at_trx_commit 的值有 3 种,也就是共有 3 种刷盘策略:
  • 0:表示每次事务提交时不进行刷盘操作。这种方式性能最高,但是也最不安全,因为如果 MySQL 挂了或宕机了,可能会丢失最近 1 秒内的事务。
  • 1:示每次事务提交时都将进行刷盘操作。这种方式性能最低,但是也最安全,因为只要事务提交成功,redo log 记录就一定在磁盘里,不会有任何数据丢失。
  • 2:表示每次事务提交时都只把 log buffer 里的 redo log 内容写入 page cache(文件系统缓存)。page cache 是专门用来缓存文件的,这里被缓存的文件就是 redo log 文件。这种方式的性能和安全性都介于前两者中间。
    刷盘策略innodb_flush_log_at_trx_commit 的默认值为 1,设置为 1 的时候才不会丢失任何数据。为了保证事务的持久性,我们必须将其设置为 1。
    另外,InnoDB 存储引擎有一个后台线程,每隔1 秒,就会把 redo log buffer 中的内容写到文件系统缓存(page cache),然后调用 fsync 刷盘。

    也就是说,一个没有提交事务的 redo log 记录,也可能会刷盘。

日志文件组

硬盘上存储的 redo log 日志文件不只一个,而是以一个日志文件组的形式出现的,每个的redo日志文件大小都是一样的。
比如可以配置为一组4个文件,每个文件的大小是 1GB,整个 redo log 日志文件组可以记录4G的内容。
它采用的是环形数组形式,从头开始写,写到末尾又回到头循环写,如下图所示。

在个日志文件组中还有两个重要的属性,分别是 write pos、checkpoint

  • write pos 是当前记录的位置,一边写一边后移
  • checkpoint 是当前要擦除的位置,也是往后推移

binlog【一致性:C】

redo log 它是物理日志,记录内容是“在某个数据页上做了什么修改”,属于 InnoDB 存储引擎。
而 binlog 是逻辑日志,记录内容是语句的原始逻辑,类似于“给 ID=2 这一行的 c 字段加 1”,属于MySQL Server 层。
不管用什么存储引擎,只要发生了表数据更新,都会产生 binlog 日志。
可以说MySQL数据库的数据备份、主备、主主、主从都离不开binlog,需要依靠binlog来同步数据,保证数据一致性。

binlog会记录所有涉及更新数据的逻辑操作,并且是顺序写。

记录格式

binlog 日志有三种格式,可以通过binlog_format参数指定。

  • statement
  • row
  • mixed
    指定statement,记录的内容是SQL语句原文,比如执行一条update T set update_time=now() where id=1,记录的内容如下。

    同步数据时,会执行记录的SQL语句,但是有个问题,update_time=now()这里会获取当前系统时间,直接执行会导致与原库的数据不一致。
    为了解决这种问题,我们需要指定为row,记录的内容不再是简单的SQL语句了,还包含操作的具体数据,记录内容如下。

    row格式记录的内容看不到详细信息,要通过mysqlbinlog工具解析出来。
    update_time=now()变成了具体的时间update_time=1627112756247,条件后面的@1、@2、@3 都是该行数据第 1 个~3 个字段的原始值(假设这张表只有 3 个字段)。
    这样就能保证同步数据的一致性,通常情况下都是指定为row,这样可以为数据库的恢复与同步带来更好的可靠性。
    但是这种格式,需要更大的容量来记录,比较占用空间,恢复与同步时会更消耗IO资源,影响执行速度。所以就有了一种折中的方案,指定为mixed,记录的内容是前两者的混合。
    MySQL会判断这条SQL语句是否可能引起数据不一致,如果是,就用row格式,否则就用statement格式。

写入机制

binlog的写入时机也非常简单,事务执行过程中,先把日志写到binlog cache,事务提交的时候,再把binlog cache写到binlog文件中。
因为一个事务的binlog不能被拆开,无论这个事务多大,也要确保一次性写入,所以系统会给每个线程分配一个块内存作为binlog cache。
我们可以通过binlog_cache_size参数控制单个线程 binlog cache 大小,如果存储内容超过了这个参数,就要暂存到磁盘(Swap)。
binlog日志刷盘流程如下

  • write:将日志写入到文件系统的 page cache,并没有把数据持久化到磁盘,所以速度比较快
  • fsync:才是将数据持久化到磁盘的操作
    write和fsync的时机,可以由参数sync_binlog控制,默认是1。
    为0的时候,表示每次提交事务都只write,由系统自行判断什么时候执行fsync。

    虽然性能得到提升,但是机器宕机,page cache里面的 binlog 会丢失。
    为了安全起见,可以设置为1,表示每次提交事务都会执行fsync,就如同 redo log 日志刷盘流程 一样。
    最后还有一种折中方式,可以设置为N(N>1),表示每次提交事务都write,但累积N个事务后才fsync。

    在出现IO瓶颈的场景里,将sync_binlog设置成一个比较大的值,可以提升性能。
    同样的,如果机器宕机,会丢失最近N个事务的binlog日志。

两阶段提交

redo log(重做日志)让InnoDB存储引擎拥有了崩溃恢复能力。
binlog(归档日志)保证了MySQL集群架构的数据一致性。
虽然它们都属于持久化的保证,但是侧重点不同。
在执行更新语句过程,会记录redo log与binlog两块日志,以基本的事务为单位,redo log在事务执行过程中可以不断写入,而binlog只有在提交事务时才写入,所以redo log与binlog的写入时机不一样。

回到正题,redo log与binlog两份日志之间的逻辑不一致,会出现什么问题?
我们以update语句为例,假设id=2的记录,字段c值是0,把字段c值更新成1,SQL语句为update T set c=1 where id=2。
假设执行过程中写完redo log日志后,binlog日志写期间发生了异常,会出现什么情况呢?

由于binlog没写完就异常,这时候binlog里面没有对应的修改记录。因此,之后用binlog日志恢复数据时,就会少这一次更新,恢复出来的这一行c值是0,而原库因为redo log日志恢复,这一行c值是1,最终数据不一致。

为了解决两份日志之间的逻辑一致问题,InnoDB存储引擎使用两阶段提交方案。
原理很简单,将redo log的写入拆成了两个步骤prepare和commit,这就是两阶段提交。

使用两阶段提交后,写入binlog时发生异常也不会有影响,因为MySQL根据redo log日志恢复数据时,发现redo log还处于prepare阶段,并且没有对应binlog日志,就会回滚该事务。

再看一个场景,redo log设置commit阶段发生异常,那会不会回滚事务呢?

并不会回滚事务,它会执行上图框住的逻辑,虽然redo log是处于prepare阶段,但是能通过事务id找到对应的binlog日志,所以MySQL认为是完整的,就会提交事务恢复数据。

undo log【原子性:A】

我们知道如果想要保证事务的原子性,就需要在异常发生时,对已经执行的操作进行回滚,在 MySQL 中,恢复机制是通过 回滚日志(undo log) 实现的,所有事务进行的修改都会先记录到这个回滚日志中,然后再执行相关的操作。

如果执行过程中遇到异常的话,我们直接利用 回滚日志 中的信息将数据回滚到修改之前的样子即可!并且,回滚日志会先于数据持久化到磁盘上。这样就保证了即使遇到数据库突然宕机等情况,当用户再次启动数据库的时候,数据库还能够通过查询回滚日志来回滚将之前未完成的事务。

另外,MVCC 的实现依赖于:隐藏字段、Read View、undo log。在内部实现中,InnoDB 通过数据行的 DB_TRX_ID 和 Read View 来判断数据的可见性,如不可见,则通过数据行的 DB_ROLL_PTR 找到 undo log 中的历史版本。每个事务读到的数据版本可能是不一样的,在同一个事务中,用户只能看到该事务创建 Read View 之前已经提交的修改和该事务本身做的修改

总结:

  1. MySQL InnoDB 引擎使用 redo log(重做日志) 保证事务的持久性,使用 undo log(回滚日志) 来保证事务的原子性。
  2. MySQL数据库的数据备份、主备、主主、主从都离不开binlog,需要依靠binlog来同步数据,保证数据一致性。
posted @   爱新觉罗LQ  阅读(142)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· DeepSeek “源神”启动!「GitHub 热点速览」
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 我与微信审核的“相爱相杀”看个人小程序副业
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· spring官宣接入deepseek,真的太香了~
点击右上角即可分享
微信分享提示