bzoj1096: [ZJOI2007]仓库建设 斜率优化dp
https://www.lydsy.com/JudgeOnline/problem.php?id=1096
中文题意不说了,
dp【i】表示从1到i所有产品都能放,而且第i个地方一定建仓库的最小费用,转移方程dp[i]=min(dp[j]+Σ(j<k<=i)x[i]-x[k])*p[k](1<=j<i)
用sump表示p的前缀和,用sumpx表示p*x的前缀和,转移方程可变成dp[i]=dp[j]+x[i]*(sump[i]-sump[j])-(sumpx[i]-sumpx[j])
dp[i] + x[i] * sump[j] = dp[j] + x[i] * sump[i] - (sumpx[i]-sumpx[j])
b + k * x = y
因为x【i】递增所以可以利用斜率优化,
/************************************************************** Problem: 1096 User: walfy Language: C++ Result: Accepted Time:2528 ms Memory:55980 kb ****************************************************************/ //#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast,no-stack-protector") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //#pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> #define fi first #define se second #define mp make_pair #define pb push_back #define pi acos(-1.0) #define ll long long #define vi vector<int> #define mod 1000000007 #define C 0.5772156649 #define ls l,m,rt<<1 #define rs m+1,r,rt<<1|1 #define pil pair<int,ll> #define pli pair<ll,int> #define pii pair<int,int> #define cd complex<double> #define ull unsigned long long #define base 1000000000000000000 #define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-12; const int N=1000000+10,maxn=123456+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; ll xx[N],p[N],c[N],sumpx[N],sump[N],q[N],dp[N]; inline ll x(int j) { return sump[j]; } inline ll y(int j) { return dp[j]+sumpx[j]; } inline double slope(int a,int b) { return (y(b)-y(a))/(x(b)-x(a)); } int main() { int n; scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%lld%lld%lld",&xx[i],&p[i],&c[i]); for(int i=1;i<=n;i++) { sump[i]=sump[i-1]+p[i]; sumpx[i]=sumpx[i-1]+p[i]*xx[i]; } int head=1,last=1;q[last]=0; for(int i=1;i<=n;i++) { while(head<last&&slope(q[head],q[head+1])<xx[i])head++; int te=q[head]; dp[i]=dp[te]+xx[i]*(sump[i]-sump[te])-sumpx[i]+sumpx[te]+c[i]; while(head<last&&slope(q[last-1],q[last])>slope(q[last],i))last--; q[++last]=i; // printf("%d %lld\n",te,dp[i]); } printf("%lld\n",dp[n]); return 0; } /*********************** ***********************/
(斜率优化的套路:有一项是关于x的函数乘上关于y的函数,然后关于x项的函数是单调的,其他项都是只包含一个(x或y)的函数)