bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
很明显最后的结果应该是一个斜率递增的结果,那么我们先按斜率排序,然后用单调栈维护,如果要加入的线i和last-1的交点在i和last的左侧,就证明last这条线已经完全被覆盖了,那么从栈中删除,直接维护下去就得到 了结果,注意一下斜率相同的情况
//#pragma comment(linker, "/stack:200000000") //#pragma GCC optimize("Ofast,no-stack-protector") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //#pragma GCC optimize("unroll-loops") #include<bits/stdc++.h> #define fi first #define se second #define mp make_pair #define pb push_back #define pi acos(-1.0) #define ll long long #define vi vector<int> #define mod 1000000007 #define C 0.5772156649 #define ls l,m,rt<<1 #define rs m+1,r,rt<<1|1 #define pil pair<int,ll> #define pli pair<ll,int> #define pii pair<int,int> #define cd complex<double> #define ull unsigned long long #define base 1000000000000000000 #define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-12; const int N=500000+10,maxn=100000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; struct line{ double k,b; int id; bool operator<(const line &rhs)const{ if(k!=rhs.k)return k<rhs.k; return b<rhs.b; } }l[N]; bool cmp(int a,int b) { return l[a].id<l[b].id; } int q[N]; int main() { int n; scanf("%d",&n); for(int i=0;i<n;i++) { scanf("%lf%lf",&l[i].k,&l[i].b); l[i].id=i+1; } sort(l,l+n); // for(int i=0;i<n;i++)printf("%f %f\n",l[i].k,l[i].b); int head=1,last=1;q[head]=0; for(int i=1;i<n;i++) { if(head<=last&&l[q[last]].k==l[i].k)last--; while(head<last) { double x=(l[i].b-l[q[last-1]].b)/(l[q[last-1]].k-l[i].k); double y=l[i].k*x+l[i].b; double x1=(l[q[last]].b-l[q[last-1]].b)/(l[q[last-1]].k-l[q[last]].k); double y1=l[q[last]].k*x+l[q[last]].b; // printf("%f %f %f %f\n",l[i].k,l[i].b,l[q[last-1]].k,l[q[last-1]].b); if(x<=x1)last--; else break; } q[++last]=i; // for(int j=head;j<=last;j++)printf("%d ",q[j]); // puts("+++"); } sort(q+head,q+last+1,cmp); for(int i=head;i<=last;i++)printf("%d ",l[q[i]].id); return 0; } /******************** 7 -1 0 1 0 0 0 0 -1 0 -2 -1 -1 1 -1 ********************/