洛谷 P1991 无线通讯网 题解
P1991 无线通讯网
题目描述
国防部计划用无线网络连接若干个边防哨所。2 种不同的通讯技术用来搭建无线网络;
每个边防哨所都要配备无线电收发器;有一些哨所还可以增配卫星电话。
任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有卫星电话)均可以通话,无论他们相距多远。而只通过无线电收发器通话的哨所之间的距离不能超过 D,这是受收发器的功率限制。收发器的功率越高,通话距离 D 会更远,但同时价格也会更贵。
收发器需要统一购买和安装,所以全部哨所只能选择安装一种型号的收发器。换句话说,每一对哨所之间的通话距离都是同一个 D。你的任务是确定收发器必须的最小通话距离 D,使得每一对哨所之间至少有一条通话路径(直接的或者间接的)。
输入格式
从 wireless.in 中输入数据第 1 行,2 个整数 S 和 P,S 表示可安装的卫星电话的哨所数,P 表示边防哨所的数量。接下里 P 行,每行两个整数 x,y 描述一个哨所的平面坐标(x, y),以 km 为单位。
输出格式
输出 wireless.out 中
第 1 行,1 个实数 D,表示无线电收发器的最小传输距离,精确到小数点后两位。
输入输出样例
输入 #1
2 4
0 100
0 300
0 600
150 750
输出 #1
212.13
说明/提示
对于 20% 的数据:P = 2,S = 1
对于另外 20% 的数据:P = 4,S = 2
对于 100% 的数据保证:1 ≤ S ≤ 100,S < P ≤ 500,0 ≤ x,y ≤ 10000。
【思路】
最小生成树 + 克鲁斯卡尔
【题目大意】
有无线电收发器和卫星电话两种工具
卫星电话不需要考虑距离
无线电收发器有传播距离的限制
求这个限制最小是多少
【题目分析】
卫星电话可以当做免费的
p个哨所需要p-1条边连接起来
而s个卫星电话可以免去s-1条边
所以就只剩下了p-s条边需要找
找最小的
所以最小生成树就很显然了
【核心思路】
将两两之间的匹配方式用结构图储存一下
然后sort排序从最短的边开始试
如果这条边连接的两个点没有被接起来
那就连起来就好了
这样知道用完p-s条边
因为从小到大排的序
所以最后用的那一条边的权值就是最大的
输出就好了
【完整代码】
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9')
{
if(c == '-')fg = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
{
sum = sum * 10 + c - '0';
c = getchar();
}
return sum * fg;
}
const int Max = 503;
int x[Max],y[Max];
int father[Max];
struct node
{
int xx,yy;
double l;
}a[Max * Max];
bool cmp(const node aa,const node bb)
{
return aa.l < bb.l;
}
int find(int xz)
{
if(father[xz] != xz)father[xz] = find(father[xz]);
return father[xz];
}
void hebing(int xz,int yz)
{
xz = find(xz);
yz = find(yz);
if(yz != xz)
father[xz] = yz;
}
int main()
{
int s = read(),p = read();
for(register int i = 1;i <= p;++ i)
father[i] = i;
for(register int i = 1;i <= p;++ i)
x[i] = read(),y[i] = read();
int jj = 0;
for(register int i = 1;i <= p;++ i)
{
for(register int j = i + 1;j <= p;++ j)
{
a[++ jj].xx = i;
a[jj].yy = j;
a[jj].l = double(sqrt((x[i] - x[j]) * (x[i] - x[j]) * 1.0 + (y[i] - y[j]) * (y[i] - y[j]) * 1.0));
}
}
sort(a + 1,a + jj + 1,cmp);
int tot = p - s;
int js = 0;
double M = 0;
for(register int i = 1;i <= jj;++ i)
{
if(find(a[i].xx) != find(a[i].yy))
{
js ++;
M = a[i].l;
hebing(a[i].xx,a[i].yy);
}
if(js == tot)
break;
}
printf("%.2lf\n",M);
return 0;
}