泰勒级数 学习笔记
条件
\(f(x)\)在\(x=x_0\)处有任意阶的导数
定义
\(f(x)\)在\(x=x_0\)处的泰勒级数为
拉格朗日余项
\(f(x)\approx P(x)=f(x_0)+f'(x_0)(x-x_0)+...+\frac {f^{(n)}(x_0)}{n!}(x-x_0)^n+R_n(x)\)
\(f(x)=P(x)+R_n(x)\)
\(R_n(x)=\frac {f^{(n+1)}(A)}{(n+1)!}(x-x_0)^{n+1}\)
\(A~between~x_0 ~and~ x\)
例子1
\(e^x\)有任意阶的导数且均为\(e^x\)
在\(x=0\)处有任意阶的导数且均为\(1\)
\(e^x=1+x+\frac 1 2 x^2+\frac 1 6 x^3+\frac 1 {24}x^4+...+\frac 1 {n!}x^n......\)
例子2
\(\sin(x)\)有任意阶的导数且依次为\((\sin x,~\cos x,-\sin x,~-\cos x),~(\sin x.....\)
在\(x=0\)处有任意阶的导数且依次为
\((0,1,0,-1),(0,1,0,-1)......\)
\(\sin x=x-\frac 1 {3!} x^3+\frac 1{5!}x^5+.....\)
例子3
\(\cos(x)\)有任意阶的导数且依次为\((\cos x,~-\sin x,-\cos x,~\sin x),~(\cos x.....\)
在\(x=0\)处有任意阶的导数且依次为
\((1,0,-1,0),(1,0,-1,0)......\)
\(\cos x=1-\frac 1 {2!}x^2+\frac 1 {4!} x^4.....\)
组合
\(i^0=1\)
\(i^1=i\)
\(i^2=-1\)
\(i^3=-i\)
\(i^4=1\)
欧拉公式:
\(e^{~i~x}=\cos(x)+i~\sin(x)\)
令x坐标为实数,y坐标为\(i\),能画出一个单位圆
几何级数
把分母乘过去试试(限制是防止inf)