微积分 学习笔记
1阶导:\(\frac {dy}{dx}\)
2阶导:\(\frac {d(\frac {dy}{dx})}{dx}=\frac {d^{~2}y}{dx^{~2}}\)
n阶导:\(\frac {d^{~n}y}{dx^{~n}}\)
导数常用公式一览
基本导数:
\(C'=~0\)
\((x^n)'= ~n~x^{n-1}\)
\((\sin x)'= ~\cos x\)
\((\cos x)'=~ -\sin x\)
\((e^x)'= ~e^x\)
\((e^{cx})'=~c~e^{cx}\)
链式法则:
\((a^x)'= [e^{~x \ln a}]'~=a^x~\ln a\)
除法法则:(也可以用链式法则\(-1\)次方去理解)
\((\csc x)'=(\frac 1 {\sin x})'=~-\frac {\cos x}{\sin^2x}=~-\csc x \cot x\)
\((\sec x)'=(\frac 1 {\cos x})'=~\frac {\sin x}{\cos^2x}=~\sec x \tan x\)
\((\tan x)'=~\frac 1{\cos^2 x}=~\sec^2 x\)
\((\cot x)'=~-\frac 1{\sin^2 x}=~-\csc^2 x\)
逆函数法则:
\((\ln x)'=~\frac 1 x\)
\((\log_a x)'=~\frac 1 {x\ln a}\)
\((\arcsin x)'=(\sin^{-1} x)'=~\frac 1{\sqrt{1-x^2}}\)
\((\arccos x)'=(\cos^{-1} x)'=~-\frac 1{\sqrt{1-x^2}}\)
\((\arctan x)'=(\tan^{-1} x)'=~ \frac 1 {1+x^2}\)
\((arccot~x)'=(\cot^{-1} x)'= ~ -\frac 1 {1+x^2}\)
法则
以下\(a,b\)为常数
加减法则:\((a f\pm bg)'=a~f'+b~g'\)
乘法法则:\((fg)'=f~g'+g'~f\)(矩形面积法证明)
除法法则:\((\frac f g)'=\frac {g~f'-f~g'}{g^2}\)
链式法则:\([~f(g(x))~]'=\frac {df}{dx}=\frac {df}{dg}\frac {dg}{dx}=f'(g(x))~~g'(x)\)
(外函数求导*内含数求导)
逆函数法则:\([~f^{-1}(y)~]'=\frac {dx}{dy}=\frac {~~~1~~~}{\frac {dy}{dx}}=\frac 1{f'(x)}\)
(逆函数又叫反函数,就是x,y交换,如\(e^x\)与\(\ln x\))
幂法则(由链式法则得):\([f(x)^n]'=n~ f^{n-1}f'\)
洛必达法则:\(\lim\limits_{x\rightarrow a}\frac {f(x)} {g(x)}=\lim\limits_{x\rightarrow a}\frac{f'(x)}{g'(x)}\)
高阶导:
\((a\pm b)^{(n)}=a^{(n)}\pm b^{(n)}\)
\((Ca)^{(n)}=C~a^{(n)}\)
\((ab)^{(n)}=\sum\limits_{k=0}^n\binom n ka^{(n-k)}b^{(k)}~~~~(长得像二项式定理,用数学归纳法证明)\)
导数应用
1.\(y'\)代表了斜率的变换,与单调性相关
\(y'=0\)时函数取得极值(不同于最大值最小值,极值是局部的)
2.\(y''\)代表了函数的弯曲性(凹凸性),与函数增长速度有关
\(y''<0且y'=0\)为MAX
\(y''>0且y'=0\)为MIN
\(y''=0\)为拐点(弯曲性改变)
小证明
\(\lim\limits_{\Delta x\rightarrow 0}\frac {\cos\Delta x-1}{\cos\Delta x}=0\)
证明:
\(\frac {\cos\Delta x-1}{\cos\Delta x}=\frac {\cos\Delta x-\cos 0}{\cos\Delta x}\)
就是\(\cos\)在\(0\)处的导数
而\(\cos\)在\(0\)处取得极值,导数为0
\(\lim\limits_{\Delta x\rightarrow 0}\frac {\sin \Delta x}{\Delta x}=1\)
证明:
\(\because 0<\Delta x<\frac {\pi} 2\)
\(\therefore \sin\Delta x<\Delta x,\tan\Delta x>\Delta x\)
\(\therefore \frac {\sin\Delta x}{\Delta x}<1,\frac {\sin \Delta x}{\cos \Delta x}>\Delta x\)
\(\therefore \frac {\sin\Delta x}{\Delta x}<1,\frac {\sin \Delta x}{\Delta x}>\cos \Delta x\)
被\(\cos\)和\(y=1\)两条线夹着
\(\therefore \lim\limits_{\Delta x\rightarrow 0} \frac {\sin\Delta x}{\Delta x}=1\)
\((\sin(x))'=\cos(x),(\cos(x))'=-\sin(x)\)
证明:
\((x^{\frac a b})'=\frac a b x^{(\frac a b -1)}\)
证明:
\(e^{ax}\)其中\(a\)为常数
\((e^{ax})'=a~e^{at}\)
证明:
令\(y=g(x)=ax\),\(~f(y)=e^y\)
\((f(g(x)))'=f'(g(x))*g'(x)=e^y*a=a~e^{at}\)
\(f'=cf+d\),其中\(c,~d\)为常数
则\(f'=c(f+\frac dc)\)
\(\because(a\pm b)'=a'\pm b'\)
\(\therefore (f+\frac dc)'=c(f+\frac dc)\)
和\(f'=c~f\)长得很像,由\(f'=c~f\)可得\(f=Ae^{cx}\)
所以由\((f+\frac dc)'=c(f+\frac dc)\)可得
\(f=Ae^{cx}-\frac dc\)
\((x\ln x-x)'=ln x\)
8.拉格朗日中值
连续光滑曲线中
区间\([a,b]\)中有一点瞬时斜率等于区间的平均斜率
注意点
用导数求出的函数极值可能在限制范围外,要特判
微积分
对于函数\(f(x)\),若求出原函数\(g(x)\)
使得\(\Delta g(x)=g(x+\Delta x)-g(x)=f(x)\)
那么我们队\(f(x)\)的求和,就可以转化成\(\Delta g(x)\)的求和
而\(\Delta g(x)\)的求和相邻两项会消掉一些东西
最后变成了\(\Delta g(x)_{end}-\Delta g(x)_{begin}\)
而不难发现\(\Delta g(x)\iff slope~g(x)\)
所以原函数就是:导数为\(f(x)\)的函数