bzoj 3000 Big Number 估算n!在k进制下的位数 斯特林公式
题目大意
求n!在k进制下的位数
2≤N≤2^31, 2≤K≤200
分析
作为数学没学好的傻嗨,我们先回顾一下log函数
\(\log_a(b)=\frac 1 {log_b(a)}\)
\(\log_a (x^k)=k*\log_a x\)
\(\log_a(bc)=log_a(b)+log_a(c)\)
嗯嗯,呵呵
我们要求的是\(log_k(n!)\)
n大处理不了
用斯特林公式
\(n! \approx \sqrt{2\pi n} * (\frac n e)^n\)
\(\log_k(n!)=\frac 1 2\log_k(2\pi n)+n*log_k(\frac n e)\)
注意
n小的时候暴力求
读入写了longlong
输出不longlong我是不是傻
solution
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef double db;
const db pi=acos(-1.0);
const db e=exp(1.0);
LL n,K;
db logk(db x){
return log(x)/log(K);
}
int main(){
int i;
while(~scanf("%lld%lld",&n,&K)){
if(n<=10000){
db ans=0;
for(i=1;i<=n;i++) ans+=logk(i);
printf("%lld\n",(LL)(1+ans));
}
else printf("%lld\n",1+(LL)(logk(2*pi*n)*0.5+logk(n/e)*n) );
}
return 0;
}