hdu 1061 Rightmost Digit(快速幂取模)
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7 6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.解题思路:简单的快速幂取模运算,水过!
AC代码:
1 #include<bits/stdc++.h> 2 using namespace std; 3 typedef long long LL; 4 LL mod_power(LL a,LL b,int mod){ 5 LL ans=1; 6 while(b){ 7 if(b&1)ans=ans*a%mod; 8 a=a*a%10; 9 b>>=1; 10 } 11 return ans; 12 } 13 int main(){ 14 int t;LL n; 15 while(cin>>t){ 16 while(t--){ 17 cin>>n; 18 cout<<mod_power(n,n,10)<<endl; 19 } 20 } 21 return 0; 22 }