Easy Dijkstra Problem(求最短路)
Description
Determine the shortest path between the specified vertices in the graph given in the input data.
Hint: You can use Dijkstra's algorithm.
Hint 2: if you're a lazy C++ programmer, you can use set and cin/cout (with sync_with_stdio(0)) - it should suffice.
Input
first line - one integer - number of test cases For each test case the numbers V, K (number of vertices, number of edges) are given,Then K lines follow, each containing the following numbers separated by a single space:ai, bi, ci ,It means that the graph being described contains an edge from ai to bi,with a weight of ci.Below the graph description a line containing a pair of integers A, B is present.The goal is to find the shortest path from vertex A to vertex B.All numbers in the input data are integers in the range 0..10000.
Output
For each test case your program should output (in a separate line) a single number C - the length of the shortest path from vertex A to vertex B. In case there is no such path, your program should output a single word "NO" (without quotes)
Example
Input: 3 3 2 1 2 5 2 3 7 1 3 3 3 1 2 4 1 3 7 2 3 1 1 3 3 1 1 2 4 1 3 Output: 12 5 NO
解题思路:坑题,WA了好几发=_=||原来题目说明的是顶点a到顶点b是一条有向边,即a-->b,而不是无向图求单源最短路,裸题(邻接矩阵)水过!
AC代码:
1 #include<iostream> 2 #include<string.h> 3 #include<cstdio> 4 using namespace std; 5 const int INF=0x3f3f3f3f; 6 const int maxn=10005; 7 int t,n,k,a,b,c,st,ed,dis[maxn],cost[maxn][maxn];bool flag,vis[maxn]; 8 void dijkstra(){ 9 for(int i=1;i<=n;++i) 10 dis[i]=cost[st][i]; 11 dis[st]=0;vis[st]=true; 12 for(int i=1;i<n;++i){ 13 int k=-1; 14 for(int j=1;j<=n;++j) 15 if(!vis[j]&&(k==-1||dis[k]>dis[j]))k=j; 16 if(dis[k]==INF){flag=true;break;}//如果此时没有最小值即为INF,说明肯定是达不到终点ed,直接退出循环 17 if(k==-1)break; 18 vis[k]=true; 19 for(int j=1;j<=n;++j) 20 if(!vis[j])dis[j]=min(dis[j],dis[k]+cost[k][j]); 21 } 22 } 23 int main(){ 24 scanf("%d",&t); 25 while(t--){ 26 scanf("%d%d",&n,&k); 27 for(int i=1;i<=n;++i) 28 for(int j=1;j<=n;++j) 29 cost[i][j]=cost[j][i]=(i==j?0:INF); 30 memset(vis,false,sizeof(vis)); 31 while(k--){ 32 scanf("%d%d%d",&a,&b,&c); 33 cost[a][b]=min(cost[a][b],c);//去重 34 } 35 scanf("%d%d",&st,&ed); 36 flag=false; 37 dijkstra(); 38 if(flag)printf("NO\n"); 39 else printf("%d\n",dis[ed]); 40 } 41 return 0; 42 }