牛客小白月赛16

A、小石的签到题

思路:签到题。简单列举一下即可发现当且仅当 $n == 1$ 时,先手小石必输,其他情况下都必赢!

AC代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <cmath>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <iomanip>
 8 #include <complex>
 9 #include <string>
10 #include <vector>
11 #include <set>
12 #include <map>
13 #include <list>
14 #include <deque>
15 #include <queue>
16 #include <stack>
17 using namespace std;
18 typedef long long LL;
19 typedef unsigned long long ULL;
20 const double eps = 1e-6;
21 const double PI = acos(-1.0);
22 const int maxn = 1e5+5;
23 const int inf = 0x3f3f3f3f;
24 
25 int n;
26 
27 int main(){
28     while(cin >> n) {
29         if(n == 1)cout <<"Yang" << endl;
30         else cout << "Shi" <<endl;
31     }
32     return 0;
33 }
View Code

B、小雨的三角形

思路:暴力就完事了!+1

AC代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <cmath>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <iomanip>
 8 #include <complex>
 9 #include <string>
10 #include <vector>
11 #include <set>
12 #include <map>
13 #include <list>
14 #include <deque>
15 #include <queue>
16 #include <stack>
17 using namespace std;
18 typedef long long LL;
19 typedef unsigned long long ULL;
20 const double eps = 1e-6;
21 const double PI = acos(-1.0);
22 const int maxn = 1e5+5;
23 const int inf = 0x3f3f3f3f;
24 const LL mod = 1e9+7;
25 
26 int n, m, x, y;
27 LL mp[1005][1005], ans[1005];
28 
29 int main(){
30     memset(mp, 0, sizeof(mp));
31     mp[1][1] = 1;
32     mp[2][1] = mp[2][2] = 2;
33     for(int i = 3; i <= 1000; ++i) mp[i][1] = mp[i][i]= i;
34     for(int i = 3; i <= 1000; ++i) {
35         for(int j = 2; j < i; ++j) {
36             mp[i][j] = (mp[i - 1][j] + mp[i - 1][j - 1] ) % mod;
37         }
38     }
39     memset(ans, 0, sizeof(ans));
40     for(int i = 1; i <= 1000; ++i) {
41         for(int j = 1; j <= i; ++j) {
42             ans[i] = (ans[i] + mp[i][j]) % mod;
43         }
44     }
45     while(cin >> n >> m) {
46         for(int i = 1; i <= m; ++i) {
47             cin >> x >> y;
48             LL res = 0;
49             for(int i = x; i <= y; ++i)  {
50                 res = (res + ans[i]) % mod;
51             }
52             cout << res << endl;
53         }
54     }
55     return 0;
56 }
View Code

C、小石的海岛之旅

思路:暴力就完事了!+2

AC代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <cmath>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <iomanip>
 8 #include <complex>
 9 #include <string>
10 #include <vector>
11 #include <set>
12 #include <map>
13 #include <list>
14 #include <deque>
15 #include <queue>
16 #include <stack>
17 using namespace std;
18 typedef long long LL;
19 typedef unsigned long long ULL;
20 const double eps = 1e-6;
21 const double PI = acos(-1.0);
22 const int maxn = 1e5+5;
23 const int inf = 0x3f3f3f3f;
24  
25 int n, m, a, cnt, h[1005];
26  
27 int main(){
28     while(cin >> n >> m) {
29         for(int i = 0; i < n; ++i) cin >> h[i];
30         for(int i = 1; i <= m; ++i) {
31             cin >> a;
32             cnt = 0;
33             bool flag = false;
34             for(int i = 0; i < n; ++i) {
35                 if(a < h[i] && !flag) ++cnt, flag = true;
36                 else if(a >= h[i] && flag) flag = false;
37             }
38             cout << cnt << endl;
39         }
40     }
41     return 0;
42 }
View Code

D、小阳买水果

思路:前缀和的差即所求答案 $ [k, i]  = [1, i] - [1, k) , ( k \leq i) $,关键点:维护一个不增序列a和最长连续子序列的和大于0。因为要求最长连续子序列(区间和大于0)的长度,那么对于第 i 个数,从不增序列a中找到一个小于当前前缀和 $ sum_i $ 的最小值,因为是不增序列,所以可以用二分来查找这个最小值的位置。为什么要维护这么一个不增序列呢?如果能从 $ [1, i - 1] $ 找到,因为从小 ---> 变大,那么所求区间 $ [k , i] $ 中所有元素的和一定是正数,也就是在他满意的条件下即可求出最长连续子序列的长度!

AC代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <cmath>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <iomanip>
 8 #include <complex>
 9 #include <string>
10 #include <vector>
11 #include <set>
12 #include <map>
13 #include <list>
14 #include <deque>
15 #include <queue>
16 #include <stack>
17 #include <bitset>
18 using namespace std;
19 typedef long long LL;
20 typedef unsigned long long ULL;
21 const int dir[4][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}}; // 上右下左
22 const int mx[8] = {-1, -2, -2, -1, 1, 2, 2, 1}; // 马可走的八个方向
23 const int my[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
24 const double eps = 1e-6;
25 const double PI = acos(-1.0);
26 const int maxn = 2e6+5;
27 const int inf = 0x3f3f3f3f;
28 
29 int n, x, sum, res, lt, rt, ans, mid, a[maxn];
30 
31 int main() {
32     while(~scanf("%d", &n)) {
33         memset(a, 0, sizeof(a));
34         ans = sum = 0;
35         for(int i = 1; i <= n; ++i) {
36             scanf("%d", &x);
37             sum += x; // 前i个数的前缀和
38             a[i] = min(a[i - 1], sum); // 维护不增序列
39             lt = 0, rt = i - 1, res = -1; 
40             while(lt <= rt) { // 从不增序列中找出最小值
41                 mid = (lt + rt) >> 1;
42                 if(a[mid] >= sum) lt = mid + 1;
43                 else rt = mid - 1, res = mid;
44             }
45             if(res != -1) ans = max(ans, i - res); 
46         }
47         printf("%d\n", ans);
48     }
49     return 0;
50 }
View Code

E、小雨的矩阵

思路:深搜入门题!

AC代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <cmath>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <iomanip>
 8 #include <complex>
 9 #include <string>
10 #include <vector>
11 #include <set>
12 #include <map>
13 #include <list>
14 #include <deque>
15 #include <queue>
16 #include <stack>
17 #include <bitset>
18 using namespace std;
19 typedef long long LL;
20 typedef unsigned long long ULL;
21 const int dir[4][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}}; // 上右下左
22 const int mx[8] = {-1, -2, -2, -1, 1, 2, 2, 1}; // 马可走的八个方向
23 const int my[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
24 const double eps = 1e-6;
25 const double PI = acos(-1.0);
26 const int maxn = 1e5+5;
27 const int inf = 0x3f3f3f3f;
28 
29 int n, a[10][10];
30 set<int> syt;
31 
32 bool check(int x, int y) {
33     if(x < 0 || y < 0 || x >= n || y >= n) return false;
34     return true;
35 }
36 
37 void dfs(int x, int y, int sum) {
38     if(x == n - 1 && y == n - 1) {
39         syt.insert(sum);
40         return;
41     }
42     for(int i = 1; i <= 2; ++i) {
43         int dx = x + dir[i][0], dy = y + dir[i][1];
44         if(check(dx, dy)) dfs(dx, dy, sum + a[dx][dy]);
45     }
46 }
47 
48 int main() {
49     while(cin >> n) {
50         syt.clear();
51         for(int i = 0; i < n; ++i) {
52             for(int j = 0; j < n; ++j) {
53                 cin >> a[i][j];
54             }
55         }
56         dfs(0, 0, a[0][0]);
57         cout << syt.size() << endl;
58     }
59     return 0;
60 }
View Code

G、小石的图形

思路:小学数学,当且仅当绳子围成半圆时面积最大!

AC代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <cstdlib>
 4 #include <cmath>
 5 #include <iostream>
 6 #include <algorithm>
 7 #include <iomanip>
 8 #include <complex>
 9 #include <string>
10 #include <vector>
11 #include <set>
12 #include <map>
13 #include <list>
14 #include <deque>
15 #include <queue>
16 #include <stack>
17 using namespace std;
18 typedef long long LL;
19 typedef unsigned long long ULL;
20 const double eps = 1e-6;
21 const double PI = acos(-1.0);
22 const int maxn = 1e5+5;
23 const int inf = 0x3f3f3f3f;
24 const LL mod = 1e9+7;
25 
26 int n;
27 
28 int main(){
29     while(cin >> n) {
30         printf("%.3f\n", 0.5 * n * n / PI);
31     }
32     return 0;
33 }
View Code

 

posted @ 2019-07-13 13:29  霜雪千年  阅读(378)  评论(0编辑  收藏  举报