题解 【luogu P1541 NOIp提高组2010 乌龟棋】
题解
题意:
有一些格子,每个格子有一定分数。
给你四种卡片,每次可以使用卡片来前进1或2或3或4个格子并拾取格子上的分数
每张卡片有数量限制。求最大分数。
分析
设dp[i]为第前i个格子所能得到的最大分数
显然有一个简单的转移方程
dp[i]=max
等等,,卡片有数量限制!所以上面的方程就不行了
换一个思路,既然它有限制,就以毒攻毒设dp[i][j][k][l]为用了i张卡片1,j 张卡片2 {...} l 张卡片4
设Go为现在在第几个格子。则Go=1+i*1+j*2+k*3+l*4 则转移方程为
dp[i][j][k][l] = \max(
dp[i][j][k][l],
dp[i-1][j][k][l]+mark[Go],
dp[i][j-1][k][l]+mark[Go],
{...},dp[i][j][k][l-1]+mark[Go])
实现简单
注意
dp[i-1][j][k][l]中的i-1在i=0是会溢出,需要特判
代码
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
const int MAXN = 400;
const int MAXM = 150;
int n, m;
int mark[MAXN], card[MAXM];
int dp[45][45][45][45];
int card_sum[5];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &mark[i]);
for(int i = 1; i <= m; i++) scanf("%d", &card[i]), card_sum[card[i]]++;
dp[0][0][0][0] = mark[1];
for(int i = 0; i <= card_sum[1]; i++)
for(int j = 0; j <= card_sum[2]; j++)
for(int k = 0; k <= card_sum[3]; k++)
for(int l = 0; l <= card_sum[4]; l++)
{
int Go = 1 + i + j * 2 + k * 3 + l * 4;
if(i) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i - 1][j][k][l] + mark[Go]);
if(j) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j - 1][k][l] + mark[Go]);
if(k) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k - 1][l] + mark[Go]);
if(l) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k][l - 1] + mark[Go]);
}
printf("%d\n", dp[card_sum[1]][card_sum[2]][card_sum[3]][card_sum[4]]);
return 0;
}
分类:
动态规划
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用