题解 【luogu P1541 NOIp提高组2010 乌龟棋】
题解
题意:
有一些格子,每个格子有一定分数。
给你四种卡片,每次可以使用卡片来前进1或2或3或4个格子并拾取格子上的分数
每张卡片有数量限制。求最大分数。
分析
设dp[i]为第前i个格子所能得到的最大分数
显然有一个简单的转移方程
dp[i]=max
等等,,卡片有数量限制!所以上面的方程就不行了
换一个思路,既然它有限制,就以毒攻毒设dp[i][j][k][l]为用了i张卡片1,j 张卡片2 {...} l 张卡片4
设Go为现在在第几个格子。则Go=1+i*1+j*2+k*3+l*4 则转移方程为
dp[i][j][k][l] = \max(
dp[i][j][k][l],
dp[i-1][j][k][l]+mark[Go],
dp[i][j-1][k][l]+mark[Go],
{...},dp[i][j][k][l-1]+mark[Go])
实现简单
注意
dp[i-1][j][k][l]中的i-1在i=0是会溢出,需要特判
代码
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
const int MAXN = 400;
const int MAXM = 150;
int n, m;
int mark[MAXN], card[MAXM];
int dp[45][45][45][45];
int card_sum[5];
int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%d", &mark[i]);
for(int i = 1; i <= m; i++) scanf("%d", &card[i]), card_sum[card[i]]++;
dp[0][0][0][0] = mark[1];
for(int i = 0; i <= card_sum[1]; i++)
for(int j = 0; j <= card_sum[2]; j++)
for(int k = 0; k <= card_sum[3]; k++)
for(int l = 0; l <= card_sum[4]; l++)
{
int Go = 1 + i + j * 2 + k * 3 + l * 4;
if(i) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i - 1][j][k][l] + mark[Go]);
if(j) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j - 1][k][l] + mark[Go]);
if(k) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k - 1][l] + mark[Go]);
if(l) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k][l - 1] + mark[Go]);
}
printf("%d\n", dp[card_sum[1]][card_sum[2]][card_sum[3]][card_sum[4]]);
return 0;
}
分类:
动态规划
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 电商平台中订单未支付过期如何实现自动关单?
· 用 .NET NativeAOT 构建完全 distroless 的静态链接应用
· 为什么构造函数需要尽可能的简单
· 探秘 MySQL 索引底层原理,解锁数据库优化的关键密码(下)
· 大模型 Token 究竟是啥:图解大模型Token
· 1.net core 工作流WorkFlow流程(介绍)
· 瞧瞧别人家的限流,那叫一个优雅!
· 从零散笔记到结构化知识库:我的文档网站建设之路
· 一文彻底搞懂 MCP:AI 大模型的标准化工具箱
· 面试官:如果某个业务量突然提升100倍QPS你会怎么做?