题解【bzoj2733 [HNOI2012]永无乡】
Descriprition
两种操作
- 把两个集合并起来
- 求一个集合中的第 \(k\) 大(的编号)
\(n \leq 10^5\)
Solution
平衡树的板子题之一
维护两个点连不连通直接并查集
考虑怎么把两个集合合并
启发式合并!即把 siz 小的那一颗平衡树每一个点暴力地加入到另一个
这样做的复杂度?对于每一个点,每一次合并之后集合大小都至少是原来的两边,所以每一个点都只会被合并 \(\log n\) 次。所以这样做是 \(O(n \log n)\) 的。
实现上的细节问题:
我用了 fhqtreap(大法好!)。启发式合并的过程(借鉴了题解区里另外一个dalao的fhqtreap)可以这么写:
inline void M(node *&r, node *p) { // p 合并到 r 中
if(!p) return ;
M(r, p->ch[0]); M(r, p->ch[1]); // 递归左子树和右子树
p->ch[0] = p->ch[1] = 0; // 把它左右子清空然后插到 r 里
insert(r, p);
}
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 100100;
int n, m, fa[N];
struct node {
int d, id, siz, rnd;
node *ch[2];
inline void upd() {
int ret = 1;
if(ch[0]) ret += ch[0]->siz;
if(ch[1]) ret += ch[1]->siz;
siz = ret;
}
}pool[N], *cur = pool, *root[N];
inline int find(int x) {
return x == fa[x] ? x : fa[x] = find(fa[x]);
}
inline int siz(node *p) {
if(p) return p->siz; return 0;
}
inline node *newnode(int d, int id) {
node *p = cur++; p->rnd = (rand() << 15) + rand();
p->siz = 1, p->d = d; p->id = id;
p->ch[0] = p->ch[1] = 0;
return p;
}
inline node *merge(node *p, node *q) {
if(!p) return q;
if(!q) return p;
if(p->rnd < q->rnd) { p->ch[1] = merge(p->ch[1], q); p->upd(); return p; }
if(p->rnd >= q->rnd) { q->ch[0] = merge(p, q->ch[0]); q->upd(); return q; }
}
inline void split(node *r, int k, node *&p, node *&q) {
if(!r) { p = q = 0; return ; }
if(siz(r->ch[0]) < k) p = r, split(r->ch[1], k - siz(r->ch[0]) - 1, r->ch[1], q);
else q = r, split(r->ch[0], k, p, r->ch[0]); r->upd();
}
inline int rk(node *r, int x) {
if(!r) return 0;
if(r->d >= x) return rk(r->ch[0], x);
else return rk(r->ch[1], x) + siz(r->ch[0]) + 1;
}
inline void insert(node *&r, node *x) {
node *p, *q; int k = rk(r, x->d);
split(r, k, p, q);
r = merge(merge(p, x), q);
}
inline void M(node *&r, node *p) { // p -> r
if(!p) return ;
M(r, p->ch[0]); M(r, p->ch[1]);
p->ch[0] = p->ch[1] = 0; p->upd(); insert(r, p);
}
inline node *Merge(node *p, node *q) {
if(p->siz <= q->siz) swap(p, q); M(p, q); return p;
}
/*
inline void out(node *p) {
if(p->ch[0]) out(p->ch[0]);
printf("%d ", p->d);
if(p->ch[1]) out(p->ch[1]);
}
*/
int main() {
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++) fa[i] = i;
for(int i = 1; i <= n; i++) {
int x; scanf("%d", &x);
root[i] = newnode(x, i);
} int q;
for(int i = 1; i <= m; i++) {
int u, v; scanf("%d %d", &u, &v);
int fu = find(u), fv = find(v);
if(fu == fv) continue ;
root[fu] = Merge(root[fu], root[fv]);
fa[fv] = fu;
}
scanf("%d", &q);
for(int i = 1; i <= q; i++) {
char op[5]; int x, y;
scanf("%s %d %d", op, &x, &y);
if(op[0] == 'B') {
int fx = find(x), fy = find(y);
if(fx == fy) continue ;
root[fx] = Merge(root[fx], root[fy]);
fa[fy] = fx;
} else {
int fx = find(x);
node *p, *q, *r;
if(siz(root[fx]) < y) {
printf("-1\n"); continue ;
}
split(root[fx], y - 1, p, q);
split(q, 1, q, r);
printf("%d\n", q->id);
root[fx] = merge(p, merge(q, r));
}
}
return 0;
}