题解【luogu1073 最优贸易】

Solution

考虑原图是 DAG 时怎么做。

拓扑排序 + dp ,令 dp[i] 表示 \(1\)\(i\) 的路径上最小的卖出价格。转移方程就是对每一个可以到达这个点的 dp 取个 min ,计算答案便是 \(\max \limits _{i} \{val_i - dp_i \}\) ,其中 val 是商品价格。dp 在拓扑序上随便转移一下就好

考虑题目怎么做便十分显然,直接缩点得到一张 DAG ,贪心的让缩完的点的卖出价格是该点中价值最大的,卖入的是该点中价值最小的。然后就可以用在 DAG 上转移的方法来做就可以了

A Very Important thing :

在更新答案的时候,需要判断这个点是否能到达 n 点所在的强连通分量里。实现方法是在 反图上 dfs 一遍就可以判断出那些点能够到达终点。

Code

#include <bits/stdc++.h>
#define INF 1000000000
using namespace std;
const int N = 100100;
const int M = 500500; 
int n, m, val[N], cnt, dfn[N], low[N], tot, U[N], V[N], ind[N], ins[N], vis[N]; 
int scc, bel[N], Max[N], Min[N], List[N], ans, dp[N], sta[N], top, z[N]; 
struct edge {
  int v; edge *next; 
}pool[M * 6], *head[N], *h[N], *hh[N];
inline void addd(int u, int v) {
  edge *p = &pool[++cnt];
  p->v = v, p->next = hh[u], hh[u] = p;
}
inline void add(int u, int v) {
  edge *p = &pool[++cnt];
  p->v = v, p->next = h[u], h[u] = p; 
}
inline void addedge(int u, int v) {
  edge *p = &pool[++cnt];
  p->v = v, p->next = head[u], head[u] = p; 
}
inline void tarjan(int u) {
  dfn[u] = low[u] = ++tot; ins[u] = 1, sta[++top] = u; 
  for(edge *p = head[u]; p; p = p->next) {
    int v = p->v; 
    if(!dfn[v]) tarjan(v), low[u] = min(low[u], low[v]);
    else if(ins[v]) low[u] = min(low[u], dfn[v]); 
  } if(low[u] == dfn[u]) {
    ++scc;
    while(sta[top + 1] != u) {
      Max[scc] = max(Max[scc], val[sta[top]]);
      Min[scc] = min(Min[scc], val[sta[top]]); 
      bel[sta[top]] = scc; ins[sta[top--]] = 0; 
    }
  }
}
inline void toposort() {
  tot = 0; queue <int> Q; 
  while(!Q.empty()) Q.pop();
  for(int i = 1; i <= scc; i++)
    if(!ind[i]) Q.push(i);
  while(!Q.empty()) {
    int u = Q.front(); Q.pop();
    List[++tot] = u;
    for(edge *p = h[u]; p; p = p->next) {
      int v = p->v; ind[v]--;
      if(ind[v] == 0) Q.push(v); 
    }
  }
}
inline void dfs(int u) {
  if(vis[u]) return ; vis[u] = 1; 
  for(edge *p = hh[u]; p; p = p->next) dfs(p->v); 
}
int main() {
  scanf("%d %d", &n, &m); 
  for(int i = 1; i <= n; i++) scanf("%d", &val[i]);
  for(int i = 1; i <= n; i++) Min[i] = INF, Max[i] = -INF;
  for(int i = 1; i <= m; i++) {
    scanf("%d %d %d", &U[i], &V[i], &z[i]);
    addedge(U[i], V[i]); 
    if(z[i] == 2) addedge(V[i], U[i]); 
  } 
  for(int i = 1; i <= n; i++) 
    if(!dfn[i]) tarjan(i); 
  for(int i = 1; i <= m; i++) {
    int x = bel[U[i]], y = bel[V[i]];
    if(x != y) { add(x, y), ind[y]++, addd(y, x); 
      if(z[i] == 2) add(y, x), ind[x]++, addd(x, y); 
    }
  } toposort(); dfs(bel[n]); 
  for(int i = 1; i <= scc; i++) dp[i] = Min[i]; 
  for(int i = 1; i <= scc; i++) {
    int u = List[i]; 
    if(vis[u]) ans = max(ans, Max[u] - dp[u]);
    for(edge *p = h[u]; p; p = p->next) {
      int v = p->v; dp[v] = min(dp[v], dp[u]); 
    }
  } 
  printf("%d\n", ans);
  return 0; 
} 
posted @ 2018-12-03 20:15  AcFunction  阅读(222)  评论(0编辑  收藏  举报