6468: Snuke's Coloring
6468: Snuke's Coloring
时间限制: 2 Sec 内存限制: 128 MB提交: 50 解决: 22
[提交][状态][讨论版][命题人:admin]
题目描述
We have a grid with H rows and W columns. At first, all cells were painted white.
Snuke painted N of these cells. The i-th ( 1≤i≤N ) cell he painted is the cell at the ai-th row and bi-th column.
Compute the following:
For each integer j ( 0≤j≤9 ), how many subrectangles of size 3×3 of the grid contains exactly j black cells, after Snuke painted N cells?
Constraints
3≤H≤109
3≤W≤109
0≤N≤min(105,H×W)
1≤ai≤H (1≤i≤N)
1≤bi≤W (1≤i≤N)
(ai,bi)≠(aj,bj) (i≠j)
Snuke painted N of these cells. The i-th ( 1≤i≤N ) cell he painted is the cell at the ai-th row and bi-th column.
Compute the following:
For each integer j ( 0≤j≤9 ), how many subrectangles of size 3×3 of the grid contains exactly j black cells, after Snuke painted N cells?
Constraints
3≤H≤109
3≤W≤109
0≤N≤min(105,H×W)
1≤ai≤H (1≤i≤N)
1≤bi≤W (1≤i≤N)
(ai,bi)≠(aj,bj) (i≠j)
输入
The input is given from Standard Input in the following format:
H W N
a1 b1
:
aN bN
H W N
a1 b1
:
aN bN
输出
Print 10 lines. The (j+1)-th ( 0≤j≤9 ) line should contain the number of the subrectangles of size 3×3 of the grid that contains exactly j black cells.
样例输入
4 5 8
1 1
1 4
1 5
2 3
3 1
3 2
3 4
4 4
样例输出
0
0
0
2
4
0
0
0
0
0
提示
There are six subrectangles of size 3×3. Two of them contain three black cells each, and the remaining four contain four black cells each.
来源
题意:一个h*w的棋盘,涂黑n个格子,求含有0~9个黑格子的3*3的矩阵分别有多少个
思路:
h和w的数据范围是1e9 显然不能开二维矩阵存涂黑的格子。
每个黑格子只对周围九个3*3的矩阵有贡献,那么可以存一下左上角格子的坐标,然后统计一下就可以了。
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+10,inf=1e9+7;
typedef long long ll;
ll h,w,node[maxn],n,a,b,cnt=0,zero,ans[15];
int main(){
scanf("%lld%lld%lld",&h,&w,&n);
zero=(h-2)*(w-2);
while(n--){
scanf("%lld%lld",&a,&b);
for (int i=-2;i<=0;i++){
for (int j=-2;j<=0;j++){
if(a+i>=1 && a+i <=h-2 && b+j>=1 &&b+j <=w-2){
node[cnt++]=inf*(a+i)+(b+j);
}
}
}
}
sort(node,node+cnt);
for (int i=0,tmp=1;i<cnt;i++){
if(node[i]==node[i+1]) tmp++;
else ans[tmp]++,zero--,tmp=1;
}
printf("%lld\n",zero);
for (int i=1;i<10;i++)
printf("%lld\n",ans[i]);
return 0;
}