如何在内网环境避开大量依赖的下载

Author: ACatSmiling

Since: 2025-02-12

内网开发时,下载项目依赖的模块,往往会成为一件很复杂的事情。在这种情况下,利用容器化技术,可以很巧妙的解决这个问题。下面,我们以开源框架 dify 来说明操作。

首先,从 Github 下载最新的源码到本地服务器(可以连接外网),dify 源码包含一个 docker-compose.yaml 文件,截取部分内容如下:

services:
# API service
api:
image: langgenius/dify-api:0.15.3
restart: always
environment:
# Use the shared environment variables.
<<: *shared-api-worker-env
# Startup mode, 'api' starts the API server.
MODE: api
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
depends_on:
- db
- redis
volumes:
# Mount the storage directory to the container, for storing user files.
- ./volumes/app/storage:/app/api/storage
networks:
- ssrf_proxy_network
- default
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.15.3
restart: always
environment:
# Use the shared environment variables.
<<: *shared-api-worker-env
# Startup mode, 'worker' starts the Celery worker for processing the queue.
MODE: worker
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
depends_on:
- db
- redis
volumes:
# Mount the storage directory to the container, for storing user files.
- ./volumes/app/storage:/app/api/storage
networks:
- ssrf_proxy_network
- default
# Frontend web application.
web:
image: langgenius/dify-web:0.15.3
restart: always
environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
APP_API_URL: ${APP_API_URL:-}
SENTRY_DSN: ${WEB_SENTRY_DSN:-}
NEXT_TELEMETRY_DISABLED: ${NEXT_TELEMETRY_DISABLED:-0}
TEXT_GENERATION_TIMEOUT_MS: ${TEXT_GENERATION_TIMEOUT_MS:-60000}
CSP_WHITELIST: ${CSP_WHITELIST:-}
TOP_K_MAX_VALUE: ${TOP_K_MAX_VALUE:-}
INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH: ${INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH:-}
# The postgres database.
db:
image: postgres:15-alpine
restart: always
environment:
PGUSER: ${PGUSER:-postgres}
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD:-difyai123456}
POSTGRES_DB: ${POSTGRES_DB:-dify}
PGDATA: ${PGDATA:-/var/lib/postgresql/data/pgdata}
command: >
postgres -c 'max_connections=${POSTGRES_MAX_CONNECTIONS:-100}'
-c 'shared_buffers=${POSTGRES_SHARED_BUFFERS:-128MB}'
-c 'work_mem=${POSTGRES_WORK_MEM:-4MB}'
-c 'maintenance_work_mem=${POSTGRES_MAINTENANCE_WORK_MEM:-64MB}'
-c 'effective_cache_size=${POSTGRES_EFFECTIVE_CACHE_SIZE:-4096MB}'
volumes:
- ./volumes/db/data:/var/lib/postgresql/data
healthcheck:
test: [ 'CMD', 'pg_isready' ]
interval: 1s
timeout: 3s
retries: 30
# The redis cache.
redis:
image: redis:6-alpine
restart: always
environment:
REDISCLI_AUTH: ${REDIS_PASSWORD:-difyai123456}
volumes:
# Mount the redis data directory to the container.
- ./volumes/redis/data:/data
# Set the redis password when startup redis server.
command: redis-server --requirepass ${REDIS_PASSWORD:-difyai123456}
healthcheck:
test: [ 'CMD', 'redis-cli', 'ping' ]

在 docker-compose.yaml 文件中,已经定义好服务相关的镜像,直接通过 docker-compose 命令,下载镜像并启动:

$ docker-compose up -d

待镜像下载完成后,将本地的镜像打包:

# 打包
$ docker save -o <image-name>.tar <image>
# 打包并压缩
$ docker save <image> | gzip > ./<image-name>.tar.gz

再将打包后的文件,迁移到内网,并加载到本地仓库:

$ docker load -i <image-name>.tar

等镜像在内网服务器加载后,再解压 dify 源码,进入 docker-compose.yaml 文件路径,即可启动服务。此时,加载到内网的镜像中,包含了每个模块运行时需要的所有依赖。

然后,dify 的各个模块,也有独立的 Dockefile 文件,以 api 模块为例:

# base image
FROM python:3.12-slim-bookworm AS base
WORKDIR /app/api
# Install Poetry
ENV POETRY_VERSION=2.0.1
# if you located in China, you can use aliyun mirror to speed up
# RUN pip install --no-cache-dir poetry==${POETRY_VERSION} -i https://mirrors.aliyun.com/pypi/simple/
RUN pip install --no-cache-dir poetry==${POETRY_VERSION}
# Configure Poetry
ENV POETRY_CACHE_DIR=/tmp/poetry_cache
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
ENV POETRY_VIRTUALENVS_CREATE=true
ENV POETRY_REQUESTS_TIMEOUT=15
FROM base AS packages
# if you located in China, you can use aliyun mirror to speed up
# RUN sed -i 's@deb.debian.org@mirrors.aliyun.com@g' /etc/apt/sources.list.d/debian.sources
RUN apt-get update \
&& apt-get install -y --no-install-recommends gcc g++ libc-dev libffi-dev libgmp-dev libmpfr-dev libmpc-dev
# Install Python dependencies
COPY pyproject.toml poetry.lock ./
RUN poetry install --sync --no-cache --no-root
# production stage
FROM base AS production
ENV FLASK_APP=app.py
ENV EDITION=SELF_HOSTED
ENV DEPLOY_ENV=PRODUCTION
ENV CONSOLE_API_URL=http://127.0.0.1:5001
ENV CONSOLE_WEB_URL=http://127.0.0.1:3000
ENV SERVICE_API_URL=http://127.0.0.1:5001
ENV APP_WEB_URL=http://127.0.0.1:3000
EXPOSE 5001
# set timezone
ENV TZ=UTC
WORKDIR /app/api
RUN \
apt-get update \
# Install dependencies
&& apt-get install -y --no-install-recommends \
# basic environment
curl nodejs libgmp-dev libmpfr-dev libmpc-dev \
# For Security
expat libldap-2.5-0 perl libsqlite3-0 zlib1g \
# install a chinese font to support the use of tools like matplotlib
fonts-noto-cjk \
# install libmagic to support the use of python-magic guess MIMETYPE
libmagic1 \
&& apt-get autoremove -y \
&& rm -rf /var/lib/apt/lists/*
# Copy Python environment and packages
ENV VIRTUAL_ENV=/app/api/.venv
COPY --from=packages ${VIRTUAL_ENV} ${VIRTUAL_ENV}
ENV PATH="${VIRTUAL_ENV}/bin:${PATH}"
# Download nltk data
RUN python -c "import nltk; nltk.download('punkt'); nltk.download('averaged_perceptron_tagger')"
# Copy source code
COPY . /app/api/
# Copy entrypoint
COPY docker/entrypoint.sh /entrypoint.sh
RUN chmod +x /entrypoint.sh
ARG COMMIT_SHA
ENV COMMIT_SHA=${COMMIT_SHA}
ENTRYPOINT ["/bin/bash", "/entrypoint.sh"]

根据业务需求,如果需要修改相应的源码,可以修改 docker-compose.yaml 文件和 Dockerfile 文件内容(重点即为此步骤),基于已经加载到内网的镜像,替换修改后的代码文件:

services:
# API service
api:
# image: langgenius/dify-api:0.14.0
build: ../api # 以 api 模块为例,取消拉取镜像,而是从 api 模块的 Dockerfile 进行 build
restart: always
privileged: true
environment:
# Use the shared environment variables.
<<: *shared-api-worker-env
# Startup mode, 'api' starts the API server.
MODE: api
SENTRY_DSN: ${API_SENTRY_DSN:-}
SENTRY_TRACES_SAMPLE_RATE: ${API_SENTRY_TRACES_SAMPLE_RATE:-1.0}
SENTRY_PROFILES_SAMPLE_RATE: ${API_SENTRY_PROFILES_SAMPLE_RATE:-1.0}
depends_on:
- db
- redis
volumes:
# Mount the storage directory to the container, for storing user files.
- ./volumes/app/storage:/app/api/storage
#- ./volumes/app/auth:/app/api/controllers/console/auth
- ./volumes/app/logs:/app/logs
networks:
- ssrf_proxy_network
- default
# base image
FROM langgenius/dify-api:0.14.0 # 基于原镜像
# test
RUN ls -al ../ # 测试代码
# Copy source code
COPY . /app/api/ # 替换修改后的代码文件

再重新构建:

$ docker-compose build

构建完成后启动服务:

$ docker-compose up -d

至此,我们既可以使用容器中的依赖,也可以根据需求自行修改代码,不需要在内网环境中加载相应的依赖。

如果我们的项目需要加载较多的依赖,可以在外网环境下,通过 Dockerfile 构建好镜像,然后导入内网,再修改 docker-compose.yaml 文件和 Dockerfile 文件,以此镜像作为基础,按业务需求,修改源码后,以新的 docker-compose.yaml 文件和 Dockerfile 文件,拷贝源码替换,重新 build 新的镜像,然后测试验证。

posted @   ACatSmiling  阅读(37)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
点击右上角即可分享
微信分享提示