20201220蔡笃俊《信息安全系统设计与实现》第五章学习笔记

一、任务内容

  • 自学教材第5章,提交学习笔记(10分)
  • 知识点归纳以及自己最有收获的内容 (3分)
  • 问题与解决思路(2分)
  • 实践内容与截图,代码链接(3分)
  • ...(知识的结构化,知识的完整性等,提交markdown文档,使用openeuler系统等)(2分)

二、知识点归纳以及自己最有收获的内容

(一)知识点归纳

本章讨论了定时器和定时器服务﹔介绍了硬件定时器的原理和基于Intelx86的PC中的硬件定时器;讲解了CPU操作和中断处理;描述了Linux中与定时器相关的系统调用、库函数和定时器服务命令;探讨了进程间隔定时器、定时器生成的信号,并通过示例演示了进程间隔定时器。编程项目的目的是要在一个多任务处理系统中实现定时器、定时器中断和间隔定时器。多任务处理系统作为一个Linux进程运行,该系统是Linux进程内并发任务的一个虚拟CPU。Linux进程的实时模式间隔定时器被设计为定期生成SIGALRM信号,充当虚拟CPU的定时器中断,虚拟CPU使用SIGALRM信号捕捉器作为定时器的中断处理程序。该项目可让读进程通过定时器队列实现任务间隔定时器,还可让读进程使用Linux信号掩码来实现临界区,以防止各项任务和中断处理程序之间出现竞态条件。

1. 硬件定时器

定时器是由时钟源和可编程计数器组成的硬件设备。时钟源通常是一个晶体振荡器,会产生周期性电信号,以精确的频率驱动计数器。使用一个倒计时值对计数器进行编程,每个时钟信号减1。当计数减为0时,计数器向CPU生成一个定时器中断,将计数值重新加载到计数器中,并重复倒计时。计数器周期称为定时器刻度,是系统的基本计时单元。

2. 个人计算机定时器

基于Intel x86的个人计算机有数个定时器(Bovet和 Cesati 2005)

  • 实时时钟(RTC):RTC由一个小型备用电池供电。即使在个人计算机关机时,它也能连续运行。它用于实时提供时间和日期信息。当Linux启动时,它使用RTC更新系统时间变量,以与当前时间保持一致。在所有类Unix系统中,时间变量是一个长整数,包含从1970年1月1日起经过的秒数。
  • 可编程间隔定时器(PIT)(Wang2015):PIT是与CPU分离的一个硬件定时器。可对它进行编程,以提供以毫秒为单位的定时器刻度。在所有IO设备中,PIT可以最高优先级IRQ0中断。PIT定时器中断由Linux内核的定时器中断处理程序来处理,为系统操作提供基本的定时单元,例如进程调度、进程间隔定时器和其他许多定时事件。
  • 多核CPU中的本地定时器(Intel1997;Wang2015):在多核CPU中,每个核都是一个独立的处理器,它有自已的本地定时器,由 CPU时钟驱动。
  • 高分辨率定时器;大多数电脑都有一个时间戳定时器(TSC),由系统时钟驱动。它的内容可通过64位TSC寄存器读取。由于不同系统主板的时钟频率可能不同,TSC不适合作为实时设备,但它可提供纳秒级的定时器分辨率。一些高端个人计算机可能还配备有专用高速定时器,以提供纳秒级定时器分辨率。

3. CPU操作

每个CPU都有一个程序计数器(PC),也称为指令指针(IP),以及一个标志或状态寄存器(SR)、一个堆栈指针(SP)和几个通用寄存器,当PC指向内存中要执行的下一条指令时,SR包含CPU的当前状态,如操作模式、中断掩码和条件码,SP指向当前堆栈栈顶。堆栈是CPU用于特殊操作(如 push、pop调用和返回等)的一个内存区域。CPU操作可通过无限循环进行建模:

while (power-on){

(1)fetch instruction:load*PC as instruction,increment PC to point to the
next instruction in memory;

(2)decode instruction: interpret the instruction's operation code and
generate operandis;

(3)execute instruction: perform operation on operands,write results to
memory if needed; execution may use the stack,implicitly change PC, etC.

(4)check for pending interrupts; may handle interrupts;
}

中断处理:在每条指令执行结束时,如果CPU未处于接受中断的状态,即在CPU的状态寄存器中屏蔽了中断。它将忽略中断请求.使其处于挂起状态,并继续执行下一条指令。对于每个中断,可以编程中断控制器以生成一个唯一编号,叫作中断向量,标识中断源。

4. 时钟服务函数

在linux下,常用的获取时间的函数有如下几个:

  • asctime
  • ctime
  • gmtime
  • localtime
  • gettimeofday
  • mktime
  • asctime_r
  • ctime_r
  • gmtime_r
  • localtime_r
  • 间隔定时器:Linux为每个进程提供了三种不同类型的间隔计时器,可用作进程计时的虚拟时钟。间隔定时器由setitimer()系统调用创建。getitimer()系统调用返回间隔定时器的状态。各间隔定时器在参数which指定的不同时间域中工作。当间隔定时器定时到期时,会向进程发送一个信号,并将定时器重置为指定的间隔值(如果是非零数)。一个信号就是发送给某个进程进行处理的一个数字(1到31)。

1.gettimeofday() 获取当前时间:

#include <stdio.h>
#include <string.h>
#include <sys/time.h>

int main()
{
    struct timeval tv;

    gettimeofday(&tv, NULL);

    printf("tv_sec: %d\n", tv.tv_sec);
    printf("tv_usec: %d\n", tv.tv_usec);

    return 0;
}

2.time函数,可以获取当前时间:

#include <stdio.h>
#include <string.h>
#include <time.h>

int main()
{
    time_t seconds;

    seconds = time((time_t *)NULL);
    printf("%d\n", seconds);

    return 0;
}

3.localtime()取得当地目前时间和日期:

#include <stdio.h>
#include <string.h>
#include <time.h>

int main()
{
    time_t timep;
    struct tm *p;

    time(&timep);
    p = localtime(&timep);

    printf("%d-%d-%d %d:%d:%d\n", (1900 + p->tm_year), ( 1 + p->tm_mon), p->tm_mday,
                                (p->tm_hour + 12), p->tm_min, p->tm_sec);

    return 0;
}

4.每间隔1s,倒计时100毫秒触发handler

#include <signal.h>
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
int count = 0;
struct itimerval t;
time_t start,end ;
void timer_handler(int sig){
      end =time(NULL);
      printf("timer_handler :  signal %d   count=%d  , diff: %ld \n",sig, ++count,end -start);
      start =  end;
      if( count >= 8){
          printf("cancel timer \n");
          t.it_value.tv_sec  =  0 ;
          t.it_value.tv_usec    =    0;
          setitimer(ITIMER_VIRTUAL, &t , NULL);
      }
}
 
int  main(){
      struct itimerval timer ;
      signal (SIGVTALRM ,timer_handler);
      timer.it_value.tv_sec =  0;
      timer.it_value.tv_usec  = 100000;
      //every 1s afterward
      timer.it_interval.tv_sec = 1;
      timer.it_interval.tv_usec = 0;
      // start a virtual itimer
      start = time(NULL);
      setitimer( ITIMER_VIRTUAL , &timer ,NULL );
      printf("press Ctrl + C  to terminate \n");
      while(1);
}

5. 临界区

在基本代码系统中,只有一种执行实体,即任务,一次只执行一个任务。某任务在收到切换命令、进入休眠或退出之前,会一直执行下去。此外,任务切换只会发生在操作结束时,而不会发生在任何操作过程中。因此,任务之间没有竞争,因此在基本代码系统中没有临界区。但是,一旦我们将中断引人系统,情况就会改变。有两种类型的实体来执行中断,分别是任务和中断处理程序,它们可能会争夺系统中的同一(共享)数据对象。例如,当某任务请求间隔定时器时,必须将请求作为定时器队列元素输入timerQueue中。当某任务修改timerQueue 时,如果出现定时器中断,它将转移任务以执行中断处理程序,可能会改动同一 timerQueue,造成竞态条件。因此,timerQueue是临界区,必须对它进行保护,以确保它一次只能由一个执行实体访问。同样,当某进程在sleep()函数过程中执行时,可能被转移到执行中断处理程序,即可执行wakeup(),以试图在进程完成休眠操作之前唤醒它,从而导致另一个竟态条件。所以,问题是如何防止任务和中断处理程序相互干扰。

6. 临界区

定时器计时,并向进程生成一个信号。操作系统内核不必使用额外的数据结构来处理进程的VIRTUAL 和 PROF定时器。但是,REAL模式间隔定时器各不相同,因为无论进程是否正在执行,它们都必须由定时器中断处理程序来更新。因此,操作系统内核必须使用额外的数据结构来处理进程的 REAL 模式定时器,并在定时器到期或被取消时采取措施。在大多数操作系统内核中,使用的数据结构都是定时器队列。

三、问题与解决思路

定时器如何判断是否超时?

经查找资料,找到了这个。这篇博客详细的讲述了linux内核定时器(timer)的实现机制:https://blog.csdn.net/wangquan1992/article/details/122968025
讲的有点深奥了,但是还是能理解一点点。linux中定时器的使用原理很简单,你只需设置一个超时时间和相应的执行函数,系统就会在超时的时候执行一开始设置的函数。超时的概念有点模糊,它指的是你设定一个时间,如果当前的时间超过了你设定的时间,那就超时了。比如说,你设置五分钟后系统自动关机,系统会记住五分钟后的具体时间,也就是当前时间再加上五分钟。过了五分钟后,系统当前时间已经比刚才设置的具体时间大了,出现超时,于是运行超时行为。
如果不要求很精确的话,用alarm()和signal()就够了。alarm()用来设置信号SIGALRM在经过参数seconds指定的秒数后传送给目前的进程。如果参数seconds为0,则之前设置的闹钟会被取消,并将剩下的时间返回。如果我们想实现秒以下精确定时与休眠,可以使用setitimer,tv_sec提供秒级精度,tv_usec提供微秒级精度。这两个定时器的使用可以参考:https://blog.csdn.net/weixin_34506795/article/details/116633698

posted @ 2022-10-23 10:15  acacacac  阅读(71)  评论(0编辑  收藏  举报