[HEOI2013]SAO
[HEOI2013]SAO
这道题是个不错的计数题,考察了调换求和顺序再前缀和优化,难点在状态设计,比较考察思维。
一句话题意:给你一棵数,树边为有向边,求其拓扑序数。
对DAG求拓扑数是一个NP问题,但是这里保证是一棵树,所以我们可以用树形DP来求解。
状态的设计上,光设结点编号\(u\)不够,还需要设计一维\(i\)表示结点\(u\)在以\(u\)为根的子树中的拓扑序的第\(i\)位,这样我们就可以写转移方程了。
对于\(u \rightarrow v\)
\[F'[u][k] = \Sigma_{v\in son} F[u][i]\times F[v][j] \times \tbinom{k-1}{i-1} \times \tbinom{size_u+size_v-k}{size_u-i},i \leq k \leq i+j-1
\]
对于\(u \leftarrow v\)
\[F'[u][k] = \Sigma_{v\in son} F[u][i]\times F[v][j] \times \tbinom{k-1}{i-1} \times \tbinom{size_u+size_v-k}{size_u-i},i+j \leq k \leq size_v+i
\]
目标:
\[\Sigma_{i=1}^{N} F[1][i]
\]
(所有结点的下标自动+1)
发现三重循环铁定不行,调换下\(j\)和\(k\)的顺序,发现\(F[v][j]\)可以前缀和处理,削掉一维。
事实上这样做后整体的复杂度由\(\text{O}(N^3)\)降为\(\text{O}(N^2)\)。(仔细研读下面的代码发现实际上处理次数为点对数)
细节看码。
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define INF (1 << 30)
#define chkmax(a, b) a = max(a, b)
#define chkmin(a, b) a = min(a, b);
inline int read() {
int w = 0, f = 1; char c;
while (!isdigit(c = getchar())) f = c == '-' ? -1 : f;
while (isdigit(c)) w = (w << 3) + (w << 1) + (c ^ 48), c = getchar();
return w * f;
}
inline int read_ch() {
char c;
while (c = getchar(), c != '>' && c != '<');
return c == '<';
}
const int maxn = 1000 + 5;
const int MOD = 1e9 + 7;
struct Edge {
int v, w, pre;
} e[maxn << 1];
int m, G[maxn];
void clear() {
m = 0;
memset(G, -1, sizeof(G));
}
void add(int u, int v, int w) {
e[m++] = (Edge){v, w, G[u]};
G[u] = m-1;
}
int T, N;
int f[maxn][maxn], g[maxn], C[maxn][maxn];
void inc(int &a, int b) {
a += b;
if (a >= MOD) a -= MOD;
}
int dec(int a) {
if (a < 0) a += MOD;
return a;
}
void init() {
C[0][0] = 1;
for (register int i = 1; i <= 1000; i++) {
C[i][0] = 1;
for (register int j = 1; j <= i; j++)
C[i][j] = (C[i-1][j] + C[i-1][j-1]) % MOD;
}
}
int size[maxn];
void dfs(int u, int fa) {
size[u] = 1;
f[u][1] = 1;
for (register int i = G[u]; ~i; i = e[i].pre) { \\ 这里实际上相当于u<->v之间的拓扑序合并起来
int v = e[i].v;
if (v == fa) continue;
dfs(v, u);
memcpy(g, f[u], sizeof(g));
memset(f[u], 0, sizeof(f[u]));
if (e[i].w) {
for (register int i = 1; i <= size[u]; i++)
for (register int k = i; k <= i+size[v]-1; k++)
inc(f[u][k], (ll)g[i] * dec(f[v][size[v]]-f[v][k-i]) % MOD * C[k-1][i-1] % MOD * C[size[u]+size[v]-k][size[u]-i] % MOD);
} else {
for (register int i = 1; i <= size[u]; i++)
for (register int k = i+1; k <= size[v] + i; k++)
inc(f[u][k], (ll)g[i] * dec(f[v][k-i]) % MOD * C[k-1][i-1] % MOD * C[size[u]+size[v]-k][size[u]-i] % MOD);
}
size[u] += size[v];
}
for (register int i = 1; i <= size[u]; i++) inc(f[u][i], f[u][i-1]);
}
int main() {
init();
T = read();
while (T--) {
N = read();
clear();
for (register int i = 1; i < N; i++) {
int u = read()+1, opt = read_ch(), v = read()+1;
add(u, v, opt); add(v, u, !opt);
}
dfs(1, 1);
printf("%d\n", f[1][N]);
}
return 0;
}