边工作边刷题:70天一遍leetcode: day 86-2

Best Meeting Point
要点:

  • 题本身不难理解,manhattan distance。follow up就变成weighted了(因为一个地方可以有多个住户)
  • 注意input是grid的形式,一种方法是2d iterate,然后用两个数组分别存x,y,只需要对column sort,row是按顺序的iterate的。最后直接取中
  • 这题之所以是Hard,因为有另一种方法:不用sort,不用找median,类似于nested weighted sum II,只不过变成双向而非单向
    • 假设到某一点i和j分别对应左右的某点(注意,和另一边无关),left表示所有i左边的人,right表示所有j右边的人。如果i右移,j左移,每移动一步所有当前left,right的距离d都会增加1。显然,在每一步选最小的增加距离最合算(到目前为止,不同层总的增加数是不同的)。而如果当前i/j上有人,人口也会增加(即left/right增加)。
    • 为什么是i<j?当i==j的时候,这个位置的新增人(either left or right)距离都是0,所以不需要计入距离。推广到一般的过程,所有新增人口,都不会对当前轮的d有影响。所以要d+=left/right是上一轮的
    • 另外,也利用了each row/col的sum,i.e.,把行列浓缩成一个值来降维。
    • 显然,这个方法也可以处理weighted的情况。所以time complexity: O(mn)

https://repl.it/Cego/1
错误点:

  • 最后结果不是/2

# A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

# For example, given three people living at (0,0), (0,4), and (2,2):

# 1 - 0 - 0 - 0 - 1
# |   |   |   |   |
# 0 - 0 - 0 - 0 - 0
# |   |   |   |   |
# 0 - 0 - 1 - 0 - 0
# The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

# Hint:

# Try to solve it in one dimension first. How can this solution apply to the two dimension case?
# Hide Company Tags Twitter
# Hide Tags Math Sort
# Hide Similar Problems (H) Shortest Distance from All Buildings


class Solution(object):
    def minTotalDistance(self, grid):
        """
        :type grid: List[List[int]]
        :rtype: int
        """
        row_num = [sum(row) for row in grid]
        col_num = [sum(col) for col in zip(*grid)]
        def minDist(sum_list):
            l, r = -1, len(sum_list)
            left,right=0,0
            d=0
            while l<r:
                if left<right:
                    d+=left
                    l+=1
                    left+=sum_list[l]
                else:
                    d+=right
                    r-=1
                    right+=sum_list[r]
            return d
        
        return minDist(row_num)+minDist(col_num)

sol = Solution()
assert sol.minTotalDistance([[1,0,0,0,1],[0,0,0,0,0],[0,0,1,0,0]])==6

posted @ 2016-07-21 19:56  absolute100  阅读(142)  评论(0编辑  收藏  举报