作者: abruzzi
链接:http://abruzzi.javaeye.com/blog/292002
发表时间: 2008年12月12日
声明:本文系JavaEye网站发布的原创博客文章,未经作者书面许可,严禁任何网站转载本文,否则必将追究法律责任!
前一向研究HMM(隐马尔可夫模型),在wiki上看到了一个python实现的forward&viterbi算法,就先放在这里,过几天研究。HMM是人们在研究人工智能(语音设别,模式识别)方面的一个重要理论,差不多相当于“知道一些线索的情况下,跟据结论推出结果”的算法,很简单,很强大!
好了,先看看这个代码,慢慢分析之
def forward_viterbi(obs, states, start_p, trans_p, emit_p):
T = {}
for state in states:
## prob. V. path V. prob.
T[state] = (start_p[state], [state], start_p[state])
for output in obs:
U = {}
for next_state in states:
total = 0
argmax = None
valmax = 0
for source_state in states:
(prob, v_path, v_prob) = T[source_state]
p = emit_p[source_state][output] * trans_p[source_state][next_state]
prob *= p
v_prob *= p
total += prob
if v_prob > valmax:
argmax = v_path + [next_state]
valmax = v_prob
U[next_state] = (total, argmax, valmax)
T = U
## apply sum/max to the final states:
total = 0
argmax = None
valmax = 0
for state in states:
(prob, v_path, v_prob) = T[state]
total += prob
if v_prob > valmax:
argmax = v_path
valmax = v_prob
return (total, argmax, valmax)
T = {}
for state in states:
## prob. V. path V. prob.
T[state] = (start_p[state], [state], start_p[state])
for output in obs:
U = {}
for next_state in states:
total = 0
argmax = None
valmax = 0
for source_state in states:
(prob, v_path, v_prob) = T[source_state]
p = emit_p[source_state][output] * trans_p[source_state][next_state]
prob *= p
v_prob *= p
total += prob
if v_prob > valmax:
argmax = v_path + [next_state]
valmax = v_prob
U[next_state] = (total, argmax, valmax)
T = U
## apply sum/max to the final states:
total = 0
argmax = None
valmax = 0
for state in states:
(prob, v_path, v_prob) = T[state]
total += prob
if v_prob > valmax:
argmax = v_path
valmax = v_prob
return (total, argmax, valmax)
python就是简单,这要撂别的高级语言,这么短的代码说不定连局部变量还没初始化完呢。这个是算法主题,下面是如何测试这个算法的一个小函数和几个状态集合。
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
#A simple example of the using algorithm
def example():
return forward_viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability)
print example()
okay,这些代码放入一个文件,就可以做一个简单的测试了。先把代码放在这里,过几天完整的分析一下。