Maximum Product Subarray——LeetCode

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

题目大意:给定一个数组,找出最大连续子数组乘积。

解题思路:

解法一、我是用动态规划来解,因为都是整数,还是比较简单,从前往后遍历一次,需要维护比较三个变量,当前最小值,当前最大值,全局最大值。为什么需要当前最小值呢?不是求最大乘积嘛,因为如果当前数是负的,并且当前最小值也是负的,那么乘积可能就是下一个最大值。

LeetCode官方题解递推公式:

Let us denote that:

f(k) = Largest product subarray, from index 0 up to k.
Similarly,

g(k) = Smallest product subarray, from index 0 up to k.
Then,

f(k) = max( f(k-1) * A[k], A[k], g(k-1) * A[k] )
g(k) = min( g(k-1) * A[k], A[k], f(k-1) * A[k] )
    public int maxProduct(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int res = nums[0], min = nums[0], max = nums[0];
        for (int i = 1; i < nums.length; i++) {
            int curr_min = min * nums[i];
            int curr_max = max * nums[i];
            min = min(curr_min, curr_max, nums[i]);
            max = max(curr_min, curr_max, nums[i]);
            res = max(res, min, max);
        }
        return res;
    }

    int min(int a, int b, int c) {
        int tmp = Math.min(a, b);
        return Math.min(tmp, c);
    }

    int max(int a, int b, int c) {
        int tmp = Math.max(a, b);
        return Math.max(tmp, c);
    }

解法二,上面说了,数组里都是整数。

①假设没有0,那么相乘的绝对值都是一直扩大的。所以可以这样考虑,偶数个负数,那么最大乘积就是所有的乘起来;要处理的就是奇数个负数的情况,这时就考虑舍弃左边第一个负数以左的乘积,或舍弃右边第一个负数以右的乘积。

②我们这里是有0的,我们可以考虑0将给定的数组划分为几个子数组,然后用①中的方式比较这些子数组中最大的乘积。

Talk is cheap>>

    public int maxProduct2(int[] nums) {
        if (nums == null || nums.length == 0) {
            return 0;
        }
        int max = Integer.MIN_VALUE;
        int prod = 1;
        for (int i = 0; i < nums.length; i++) {
            prod *= nums[i];
            max = Math.max(max, prod);
            if (nums[i] == 0) {
                prod = 1;
            }
        }
        prod = 1;
        for (int i = nums.length - 1; i >= 0; i--) {
            prod *= nums[i];
            max = Math.max(max, prod);
            if (nums[i] == 0) {
                prod = 1;
            }
        }
        return max;
    }

 

posted @ 2015-04-23 16:37  丶Blank  阅读(171)  评论(0编辑  收藏  举报