Hive不同文件的读取对比

stored as textfile

直接查看hdfs 
hadoop fs -text

hive> create table test_txt(name string,val string) stored as textfile;

stored as sequencefile

hadoop fs -text

hive> create table test_seq(name string,val string) stored as sequencefile;

stored as rcfile

hive –service rcfilecat path

hive> create table test_rc(name string,val string) stored as rcfile;

stored as inputformat ‘class’自定义

outformat ‘class’ 
基本步骤: 
1、编写自定义类 
2、打成jar包 
3、添加jar文件,hive> add jar /***/***/***.jar(当前生效)或者拷贝到hive安装目录的lib目录下,重启客户端(永久生效)。 
4、创建表,指定自定义的类

Hive使用SerDe

SerDe是”Serializer”和”Deserializer”的简写。 
Hive使用SerDe(和FileFormat)来读、写表的行。 
读写数据的顺序如下:

HDFS文件-->InputFileFormat--><key,value>-->Deserializer-->Row对象 Row对象-->Serializer--><key,value>-->OutputFileFormat-->HDFS文件

Hive自带的序列化与反序列化 

当然我们也可以自己实现自定义的序列化与反序列化 
Hive自定义序列化与反序列化步骤 
1、实现接口SerDe或者继承AbstractSerDe抽象类 
2、重写里面的方法

Demo:

创建表

drop table apachelog; create table apachelog( host string, identity string, user string, time string, request string, status string, size string, referer string, agent string ) row format serde 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' with serdeproperties( "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([^ ]*) ([0-9]*) ([0-9]*) ([^ ]*) ([^ ]*)" )stored as textfile;

cat serdedata 110.52.250.126 test user - GET 200 1292 refer agent 27.19.74.143 test root - GET 200 680 refer agent

加载数据

load data local inpath '/liguodong/hivedata/serdedata' overwrite into table apachelog;

查看内容

select * from apachelog; select host from apachelog;