梯度下降更新算法
梯度更新是要同时更新,如下图所示:θ0和θ1同时更新,而不是更新完一个后再更新另一个。
学习率α过小,梯度下降较慢,训练时间增长。若学习率α过大,梯度下降会越过最低点,难以得到最优的结果,导致难以收敛或发散。
如果参数值已是局部最优,进行梯度下降计算时导数是0,梯度下降不会作任何操作,参数不改变
在梯度下过程中无需修改学习率,因为在接近局部最有点时导数项会变小,梯度下降的步幅也会随之比变小。
梯度下降中batch:指计算一次梯度下降就使用全部的训练集数据
mini batch :指计算一次梯度下降时使用了一小部分训练集数据
多元特征的梯度下降时,进行特征缩放,可将梯度下降的速度提高,通常将特征的取值缩放至大约-1到1之间
使用小的学习率,一般0.001,0.003,0.01,0.03,0.1,0.3,1等
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人