A-06 最小角回归法
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
最小角回归法
最小角回归相当于前向选择法和前向梯度法的一个折中算法,简化了前项梯度法因的迭代过程,并在一定程度的保证了前向梯度法的精准度。
通常用最小角回归法解决线性模型的回归系数。对于一个有个样本,每个样本有个特征的训练集而言,假设可以拟合一个线性模型,其中是的向量,是的矩阵,是的向量。即可通过最小角回归法求得最小化该模型的参数。
首先把矩阵看成个的向量,之后选择与向量余弦相似度最大,即与最为接近的一个变量,使用类似于前向选择法中的残差计算方法得到新的目标,此时不同于前向梯度法的一小步一小步走,而是走到出现一个的时候,此时和的余弦相似度等于和的余弦相似度,这个时候残差沿着和的角平分线方向走,知道出现第三个特征和的相关度等于和的余弦相似度等于和的余弦相似度的时候,使用这三者的共同角平分线,作为残差的路径方向,直到所有变量取完了,停止算法,即可得到。
一、举例
# 举例图例
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
# X1*w1
plt.annotate(xytext=(2, 5), xy=(8, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(6, 4.5, s='\(X_1*\omega_1\)', color='g')
# X1
plt.annotate(xytext=(2, 5), xy=(4, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2.5, 4.5, s='\(X_1\)', color='g')
# X2
plt.annotate(xytext=(2, 5), xy=(3, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2, 6, s='\(X_2\)', color='g')
# Y
plt.annotate(xytext=(2, 5), xy=(12, 8), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(5, 7.5, s='\(Y\)', color='g')
# X1
plt.annotate(xytext=(8, 5), xy=(10, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(8.5, 4.5, s='\(X_1\)', color='g')
# X2
plt.annotate(xytext=(8, 5), xy=(9, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(8, 6, s='\(X_2\)', color='g')
# w2(X1+X2)
plt.annotate(xytext=(8, 5), xy=(12, 8), s='', color='r',
arrowprops=dict(arrowstyle="->", color='gray'))
plt.text(10.5, 6.3, s='\((X_1+X_2)\omega_2\)', color='g')
plt.xlim(0, 13)
plt.ylim(2, 13)
plt.title('最小角回归法举例', fontproperties=font, fontsize=20)
plt.show()
上图假设为维,首先可以看出,离最接近的是,首先在上走一段距离,知道残差和的相关度等于残差和的相关度,即残差在和的角平分线上,由于为维,此时沿着角平分线走,直到残差足够小时停止,如果此时不是维,则继续选择第3个、第4个特征走下去。
二、最小角回归法优缺点
2.1 优点
- 特别适合特征维度高于样本数的情况
2.2 缺点
- 迭代方向是根据目标的残差定的,所以算法对训练集中的噪声特别敏感
三、小结
前向选择法由于涉及到投影,只能给出一个近似解;前向梯度法则需要自己手动调试一个很好的参数;最小角回归法结合了两者的优点,但是至于算法具体好坏害的取决于训练集,即算法的稳定性无法保证。
对算法具体计算有兴趣的同学,可以参考Bradley Efron的论文《Least Angle Regression》,https://pan.baidu.com/s/10if9FGdkwEZ4_BolzCGszA ,如果你下载看了,恭喜你入坑。