184 Python程序中的线程操作-锁
目录
一、同步锁
1.1 多个线程抢占资源的情况
from threading import Thread
import os,time
def work():
global n
temp=n
time.sleep(0.1)
n=temp-1
if __name__ == '__main__':
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join()
print(n) #结果可能为99
1.1.1 对公共数据的操作
import threading
R=threading.Lock()
R.acquire()
'''
对公共数据的操作
'''
R.release()
1.2 同步锁的引用
from threading import Thread,Lock
import os,time
def work():
global n
lock.acquire()
temp=n
time.sleep(0.1)
n=temp-1
lock.release()
if __name__ == '__main__':
lock=Lock()
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join()
print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全
1.3 互斥锁与join的区别
#不加锁:并发执行,速度快,数据不安全
from threading import current_thread,Thread,Lock
import os,time
def task():
global n
print('%s is running' %current_thread().getName())
temp=n
time.sleep(0.5)
n=temp-1
if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n))
'''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:0.5216062068939209 n:99
'''
#不加锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全
from threading import current_thread,Thread,Lock
import os,time
def task():
#未加锁的代码并发运行
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
#加锁的代码串行运行
lock.acquire()
temp=n
time.sleep(0.5)
n=temp-1
lock.release()
if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n))
'''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:53.294203758239746 n:0
'''
# 有的同学可能有疑问:既然加锁会让运行变成串行,那么我在start之后立即使用join,就不用加锁了啊,也是串行的效果啊
# 没错:在start之后立刻使用jion,肯定会将100个任务的执行变成串行,毫无疑问,最终n的结果也肯定是0,是安全的,但问题是
# start后立即join:任务内的所有代码都是串行执行的,而加锁,只是加锁的部分即修改共享数据的部分是串行的
# 单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高.
from threading import current_thread,Thread,Lock
import os,time
def task():
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
temp=n
time.sleep(0.5)
n=temp-1
if __name__ == '__main__':
n=100
lock=Lock()
start_time=time.time()
for i in range(100):
t=Thread(target=task)
t.start()
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n))
'''
Thread-1 start to run
Thread-2 start to run
......
Thread-100 start to run
主:350.6937336921692 n:0 #耗时是多么的恐怖
'''
)
二、死锁与递归锁
进程也有死锁与递归锁,在进程那里忘记说了,放到这里一起说了。
所谓死锁:是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁
2.1 死锁
from threading import Lock as Lock
import time
mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print(123)
mutexA.release()
mutexA.release()
解决方法:递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁。
2.2 递归锁RLock
from threading import RLock as Lock
import time
mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print(123)
mutexA.release()
mutexA.release()
三、典型问题:科学家吃面
3.1 死锁问题
import time
from threading import Thread,Lock
noodle_lock = Lock()
fork_lock = Lock()
def eat1(name):
noodle_lock.acquire()
print('%s 抢到了面条'%name)
fork_lock.acquire()
print('%s 抢到了叉子'%name)
print('%s 吃面'%name)
fork_lock.release()
noodle_lock.release()
def eat2(name):
fork_lock.acquire()
print('%s 抢到了叉子' % name)
time.sleep(1)
noodle_lock.acquire()
print('%s 抢到了面条' % name)
print('%s 吃面' % name)
noodle_lock.release()
fork_lock.release()
for name in ['哪吒','nick','tank']:
t1 = Thread(target=eat1,args=(name,))
t2 = Thread(target=eat2,args=(name,))
t1.start()
t2.start()
3.2 递归锁解决死锁问题
import time
from threading import Thread,RLock
fork_lock = noodle_lock = RLock()
def eat1(name):
noodle_lock.acquire()
print('%s 抢到了面条'%name)
fork_lock.acquire()
print('%s 抢到了叉子'%name)
print('%s 吃面'%name)
fork_lock.release()
noodle_lock.release()
def eat2(name):
fork_lock.acquire()
print('%s 抢到了叉子' % name)
time.sleep(1)
noodle_lock.acquire()
print('%s 抢到了面条' % name)
print('%s 吃面' % name)
noodle_lock.release()
fork_lock.release()
for name in ['哪吒','nick','tank']:
t1 = Thread(target=eat1,args=(name,))
t2 = Thread(target=eat2,args=(name,))
t1.start()
t2.start()