【UOJ #110】【APIO 2015】Bali Sculptures

http://uoj.ac/problem/110
这道题subtask4和subtask5是不同的算法。
主要思想都是从高位到低位贪心确定答案。
对于subtask4,n比较小,设\(f(i,j)\)表示前\(i\)个雕塑分成\(j\)组能否满足当前答案,最后检查\(f(n,A\sim B)\)是否有值为true的,时间复杂度\(O(n^3\log\sum Y_i)\)
对于subtask5,n比较大,但A=1,设\(f(i)\)表示前\(i\)个雕塑要满足当前答案最少能分成多少组,最后检查\(f(n)\)是否不大于B,时间复杂度\(O(n^2\log\sum Y_i)\)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;

const int N = 2003;

int n, A, B, Y[N];
ll sum[N], num = (1ll << 41) - 1;

namespace lalala {
	bool f[N][N];
	bool can(ll x) {
		f[0][0] = true;
		for (int i = 1; i <= n; ++i)
			for (int j = 1; j <= B && j <= i; ++j) {
				f[i][j] = false;
				for (int k = i - 1; k >= 0; --k)
					if (((sum[i] - sum[k]) | x) <= x && f[k][j - 1]) {
						f[i][j] = true;
						break;
					}
			}
		for (int i = A; i <= B; ++i) if (f[n][i]) return true;
		return false;
	}
	
	void solve() {
		for (int i = 40; i >= 0; --i)
			if (can(num ^ (1ll << i))) num ^= (1ll << i);
		printf("%lld\n", num);
	}
}

namespace hahaha {
	int f[N];
	bool can(ll x) {
		for (int i = 1; i <= n; ++i) {
			f[i] = B + 1;
			for (int j = i - 1; j >= 0; --j)
				if (((sum[i] - sum[j]) | x) <= x && f[j] + 1 < f[i])
					f[i] = f[j] + 1;
		}
		return f[n] <= B;
	}
	
	void solve() {
		for (int i = 40; i >= 0; --i)
			if (can(num ^ (1ll << i))) num ^= (1ll << i);
		printf("%lld\n", num);
	}
}

int main() {
	scanf("%d%d%d", &n, &A, &B);
	for (int i = 1; i <= n; ++i) scanf("%d", Y + i), sum[i] = sum[i - 1] + Y[i];
	
	if (A == 1) hahaha::solve();
	else lalala::solve();
	
	return 0;
}
posted @ 2017-04-18 17:16  abclzr  阅读(232)  评论(0编辑  收藏  举报