【51Nod 1244】莫比乌斯函数之和

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244
模板题。。。
杜教筛和基于质因子分解的筛法都写了一下模板。


杜教筛

用杜教筛求积性函数\(f(n)\)的前缀和\(S(n)=\sum\limits_{i=1}^nf(i)\),需要构造一个\(g(n)\)使得\(\sum\limits_{d|n}f(d)g\left(\frac nd\right)\)\(\sum\limits_{i=1}^ng(i)\)都可以快速求出。因为我们有公式:

\[\sum_{i=1}^n\sum_{d|i}f(d)g\left(\frac id\right)=\sum_{i=1}^ng(i)S\left(\left\lfloor\frac ni\right\rfloor\right) \]

对于\(\mu(n)\)的前缀和,很明显\(g(n)=1\)。这样的话:

\[\sum_{i=1}^n\sum_{d|i}\mu(d)=1=\sum_{i=1}^nS\left(\left\lfloor\frac ni\right\rfloor\right) \]

\[S(n)=1-\sum_{i=2}^nS\left(\left\lfloor\frac ni\right\rfloor\right) \]

用Hash表存储S的值

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll N = 1E10;
const int UP = 3981071;

int mu[UP + 3], prime[UP + 3], num = 0, sum[UP + 3];
bool notp[UP + 3];

void Euler_shai() {
	sum[1] = 1;
	for (int i = 2; i <= UP; ++i) {
		if (!notp[i]) {
			prime[++num] = i;
			mu[i] = -1;
		}
		for (int j = 1, pro; j <= num && (pro = prime[j] * i) <= UP; ++j) {
			notp[pro] = true;
			if (i % prime[j] == 0) {
				mu[pro] = 0;
				break;
			} else
				mu[pro] = -mu[i];
		}
		sum[i] = sum[i - 1] + mu[i];
	}
}

struct HashTable {
	static const int p = 1000007;
	ll val[p], ref[p];
	HashTable() {memset(ref, -1, sizeof(ref));}
	
	void add(ll pos, ll nu) {
		int tmp = (int) (pos % p);
		while (ref[tmp] != -1) {
			if (ref[tmp] == pos) return;
			++tmp; if (tmp == p) tmp = 0;
		}
		ref[tmp] = pos;
		val[tmp] = nu;
	}
	
	ll query(ll pos) {
		int tmp = (int) (pos % p);
		while (ref[tmp] != pos) {++tmp; if (tmp == p) tmp = 0;}
		return val[tmp];
	}
} HT;

ll Sum(ll x) {
	return x <= UP ? sum[x] : HT.query(x);
}

void DJ_shai(ll n) {
	for (ll i = n, y; i >= 1; i = n / (y + 1)) {
		y = n / i;
		if (y <= UP) continue;
		ll ret = 0;
		for (ll j = 2, l, pre = 1; j <= y; ++j) {
			l = y / j;
			j = y / l;
			ret += Sum(l) * (j - pre);
			pre = j;
		}
		HT.add(y, 1ll - ret);
	}
}

int main() {
	Euler_shai();
	ll a, b;
	scanf("%lld%lld", &a, &b);
	DJ_shai(b);
	DJ_shai(a - 1);
	printf("%lld\n", Sum(b) - Sum(a - 1));
	return 0;
}

基于质因子分解的筛法

基于质因子分解的筛法细节比较多(貌似被称作洲哥筛?)。

\[\sum_{i=1}^n\mu(i)=\sum_{x\leq n且x无大于\sqrt n质因子}\mu(x)\left(1+\sum_{\sqrt n<p\leq\left\lfloor\frac nx\right\rfloor且p为质数}\mu(p)\right) \]

设小于等于\(\sqrt n\)的质数从小到大排列为\(p_1,p_2\dots p_m\)
\(g(i,j)\)表示\([1,j]\)内与前i个质数互质的数的个数。
转移:\(g(i,j)=g(i-1,j)-g\left(i-1,\left\lfloor\frac j{p_i}\right\rfloor\right)\)
\(g(m,j)-1\)即为\([1,j]\)内大于\(\sqrt n\)的质数个数,它的相反数就是\(\sum\limits_{\sqrt n<p\leq j且p为质数}\mu(p)\)
枚举小于\(\sqrt n\)的所有数的\(\mu\),并和上面等式右边的括号内的数相乘求和。
这样剩下的就是大于等于\(\sqrt n\)的满足条件的\(\mu\)值,这些\(\mu\)值也要乘上括号内的数,不过这些括号内的数都是1,所以大于等于\(\sqrt n\)的满足条件的\(\mu\)值就可以统一计算了。
\(p_1,p_2\dots p_m\)翻转,变成从大到小。
再设\(f(i,j)\)表示用前i个质数构成质因子的数中在\([1,j]\)内的数的\(\mu\)值和。
转移:\(f(i,j)=f(i-1,j)+\mu(p_i)f\left(i-1,\left\lfloor\frac j{p_i}\right\rfloor\right)\)
\(f(m,n)-\sum\limits_{1\leq i<\sqrt n}\mu(i)\)就是统一计算出来的和。
因为下取整只有\(O(\sqrt n)\)种取值,枚举小于等于\(\sqrt n\)的质数,质数个数大概是\(\frac{\sqrt n}{\log\sqrt n}\),所以时间复杂度是\(O\left(\frac n{\log n}\right)\)
加上一些优化就可以达到\(O\left(\frac{n^{\frac 34}}{\log n}\right)\)
这只是筛最简单的\(\mu\)的前缀和,更一般的积性函数的前缀和求法以及优化到\(O\left(\frac{n^{\frac 34}}{\log n}\right)\)的方法详见2016年候选人论文《积性函数求和的几种方法》,这里实在说不下了。

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1E10;
const int UP = 1E5;

bool notp[UP + 3];
int prime[UP + 3], sum_p[UP + 3], sum_mu[UP + 3], mu[UP + 3], pre[UP * 2 + 3], num = 0;
ll G[UP * 2 + 3], F[UP * 2 + 3], J[UP * 2 + 3];

void Euler_shai(int n) {
	mu[1] = sum_mu[1] = 1;
	for (int i = 2; i <= n; ++i) {
		if (!notp[i]) {
			prime[++num] = i;
			mu[i] = -1;
			sum_p[i] = sum_p[i - 1] + 1;
		} else
			sum_p[i] = sum_p[i - 1];
		for (int j = 1, pro; j <= num && (pro = i * prime[j]) <= n; ++j) {
			notp[pro] = true;
			if (i % prime[j] == 0) break;
			else mu[pro] = -mu[i];
		}
		sum_mu[i] = sum_mu[i - 1] + mu[i];
	}
}

struct HashTable {
	static const int ppp = 2333333;
	ll ref[ppp]; int val[ppp];
	void clr() {memset(ref, -1, sizeof(ref)); ref[0] = val[0] = 0;}
	
	void add(ll pos, int nu) {
		int tmp = pos % ppp;
		while (ref[tmp] != -1) {++tmp; if (tmp == ppp) tmp = 0;}
		ref[tmp] = pos; val[tmp] = nu;
	}
	
	int query(ll pos) {
		int tmp = pos % ppp;
		while (ref[tmp] != pos) {++tmp; if (tmp == ppp) tmp = 0;}
		return val[tmp];
	}
} HT;

ll ZY_shai(ll n) {
	int cnt = 0, sqf = floor(sqrt(n)), sqc = ceil(sqrt(n));
	while (prime[num] > sqf) --num;
	
	HT.clr();
	for (ll i = n, y; i >= 1; i = n / (y + 1)) {
		J[++cnt] = (y = n / i);
		HT.add(y, cnt);
		G[cnt] = y;
		pre[cnt] = 0;
	}
	
	ll pp, delta;
	for (int i = 1, p = prime[i]; i <= num; p = prime[++i]) {
		pp = 1ll * p * p;
		for (int j = cnt; j >= 1 && J[j] >= pp; --j) {
			int id = HT.query(J[j] / p);
			delta = max(G[id] - (i - 1 - pre[id]), 1ll);
			G[j] -= delta;
			pre[j] = i;
		}
	}
	
	for (int j = cnt; j >= 1; --j)
		G[j] = max(G[j] - (num - pre[j]), 1ll);
	
	ll ans = 0;
	for (int i = 1; i < sqc; ++i)
		ans += (2ll - G[HT.query(n / i)]) * mu[i];
	
	ll prep = 0;
	for (int j = 1; j <= cnt; ++j) F[j] = 1;
	for (int i = num, p = prime[i]; i >= 1; p = prime[--i]) {
		pp = 1ll * p * p;
		for (int j = cnt; j >= 1 && J[j] >= pp; --j) {
			if (J[j] < prep * prep) {
				if (J[j] > prep) F[j] = 1 - (sum_p[min(J[j], 1ll * sqf)] - sum_p[prep - 1]);
				else F[j] = 1;
			}
			int id = HT.query(J[j] / p);
			if (J[id] < prep * prep) {
				if (J[id] >= prep) delta = 1 - (sum_p[min(J[id], 1ll * sqf)] - sum_p[prep - 1]);
				else delta = 1;
			} else
				delta = F[id];
			F[j] -= delta;
		}
		prep = p;
	}
	
	return ans + F[cnt] - sum_mu[sqc - 1];
}

int main() {
	ll a, b;
	scanf("%lld%lld", &a, &b);
	Euler_shai((int) sqrt(b));
	b = ZY_shai(b);
	a = ZY_shai(a - 1);
	printf("%lld\n", b - a);
	return 0;
}

总结

杜教筛比质因子分解筛法要快。质因子分解筛法可以筛更加一般的积性函数,比杜教筛无脑,但细节巨多,代码量大(容易写残)。
总算写完了

posted @ 2017-01-07 17:39  abclzr  阅读(1320)  评论(0编辑  收藏  举报