【51Nod 1674】【算法马拉松 19A】区间的价值 V2
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674
对区间分治,统计\([l,r]\)中经过mid的区间的答案。
我的做法是从mid向右扫到r,统计出所有\([mid,i],mid\leq i \leq r\)的and和or值。
然后发现这些and和or值有很多相同的,把相同的压在一起并记录sum,再从mid-1扫到l并暴力从mid向右统计答案。
事实上因为\([mid,i],mid\leq i \leq r\)是连续的,所以压完后的个数是\(O(2loga)\)的(a为\(10^9\))。
这样时间复杂度是\(O(nlognloga)\)。
听说有\(O(nlog^2a)\)的二进制分组做法,好神啊orz
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int in() {
int k = 0; char c = getchar();
for (; c < '0' || c > '9'; c = getchar());
for (; c >= '0' && c <= '9'; c = getchar())
k = k * 10 + c - 48;
return k;
}
const int N = 100003;
const ll p = 1000000007;
int n, a[N], AD[N], OR[N], len, sum[N], anow, onow;
ll ans = 0;
void solve(int l, int r) {
if (l == r) return;
int mid = (l + r + 1) >> 1;
len = mid;
AD[len] = OR[len] = a[mid];
sum[len] = 1;
for (int i = mid + 1; i <= r; ++i)
if (((AD[len] & a[i]) != AD[len]) || ((OR[len] | a[i]) != OR[len])) {
++len;
AD[len] = AD[len - 1] & a[i];
OR[len] = OR[len - 1] | a[i];
sum[len] = 1;
} else
++sum[len];
anow = onow = a[mid - 1];
for (int i = mid - 1; i >= l; --i) {
anow &= a[i];
onow |= a[i];
for (int j = mid; j <= len; ++j)
ans = (ans + (ll) (anow & AD[j]) * (ll) (onow | OR[j]) % p * (ll) (sum[j]) % p) % p;
}
solve(l, mid - 1); solve(mid, r);
}
int main() {
n = in();
for (int i = 1; i <= n; ++i)
a[i] = in(), ans = (ans + 1ll * a[i] * a[i]) % p;
solve(1, n);
printf("%d\n", (int) ans);
return 0;
}
NOI 2017 Bless All