Processing math: 100%

【CodeVS 3290】【NOIP 2013】华容道

http://codevs.cn/problem/3290/

据说2013年的noip非常难,但Purpleslz学长还是AK了。能A掉这道题真心orz。

设状态(i,j,k)表示目标棋子在(i,j)这个位置,空格在紧贴着目标棋子的k方向,0k<4

因为目标棋子要移动,空格肯定在它旁边。往空格的方向走一步,空格便出现在它另一边。对于这两个状态连边,边权为1。

为了使目标棋子向某一方向移动,需要目标棋子不动,空格从紧贴着目标棋子的某一方向移动到紧贴着目标棋子的另一个方向。对于固定目标棋子位置但空格对于目标棋子的方向不同的状态之间互相连边,边权需要bfs求得。

对于每个询问,给出初始空格的位置,bfs出初始的空格移动到目标棋子旁边四个位置的最短距离,并连边, 边权为最短距离。

最后跑spfa求出到达目标棋子到达终点需要走的最短路。

时间复杂度O(nm),因为边数是nmk级别的,而且k是个常数,所以把k忽略掉233 _(:з」∠)_k都快比nm大了QwQ

话说spfa的复杂度真的是O(E)的吗(/"≡ _ ≡)/~┴┴

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 33;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, 1, 0, -1};
int in() {
    int k = 0, fh = 1; char c = getchar();
    for(; c < '0' || c > '9'; c = getchar())
        if (c == '-') fh = -1;
    for(; c >= '0' && c <= '9'; c = getchar())
        k = (k << 3) + (k << 1) + c - '0';
    return k * fh;
}
 
struct node {int nxt, to, w;} E[20003];
int Move[33][33][4][4], point[4003], cnt = 0, a[33][33], n, m, qq;
int number[33][33][4], tot = 0;
 
void ins(int u, int v, int w) {E[++cnt] = (node) {point[u], v, w}; point[u] = cnt;}
 
bool can(int x, int y) {
    return ((x >= 1) && (x <= n) && (y >= 1) && (y <= m) && (a[x][y] == 1));
}
 
struct Point {
    int x, y, d;
    Point(int _x = 0, int _y = 0, int _d = 0) : x(_x), y(_y), d(_d) {}
    bool operator == (const Point &A) const {
        return x == A.x && y == A.y;
    }
} q[1003];
 
int cross(int x, int y, int h, int hh) {
    Point s, t;
    s = Point(x + dx[h], y + dy[h], 0);
    t = Point(x + dx[hh], y + dy[hh], 0);
    a[x][y] = 0;
    int head = 0, tail = 1;
    q[1] = s; a[s.x][s.y] = 1;
     
    Point u, v;
    while (head != tail) {
        u = q[++head];
        if (u == t) break;
        for(int d = 0; d < 4; ++d)
            if (can(u.x + dx[d], u.y + dy[d])) {
                v = Point(u.x + dx[d], u.y + dy[d], u.d + 1);
                q[++tail] = v;
                a[v.x][v.y] = 0;
            }
    }
     
    for(int i = 1; i <= tail; ++i)
        a[q[i].x][q[i].y] = 1;
     
    a[x][y] = 1;
    if (u == t) return u.d;
    else return 0x7fffffff;
}
 
void dealwith(int x, int y) {
    int ed;
    for(int d = 0; d < 4; ++d)
        if (can(x + dx[d], y + dy[d]))
            for(int dd = d + 1; dd < 4; ++dd)
                if (can(x + dx[dd], y + dy[dd])) {
                    ed = Move[x][y][d][dd] = Move[x][y][dd][d] = cross(x, y, d, dd);
                    if (ed != 0x7fffffff) {
                        ins(number[x][y][d], number[x][y][dd], ed);
                        ins(number[x][y][dd], number[x][y][d], ed);
                    }
                }
}
 
int dis(Point g, Point s, Point t) {
    int head = 0, tail = 1;
    s.d = 0; q[1] = s; a[s.x][s.y] = 0; a[g.x][g.y] = 0;
    Point u, v;
    while (head != tail) {
        u = q[++head];
        if (u == t) break;
        for(int d = 0; d < 4; ++d)
            if (can(u.x + dx[d], u.y + dy[d])) {
                v = Point(u.x + dx[d], u.y + dy[d], u.d + 1);
                q[++tail] = v;
                a[v.x][v.y] = 0;
            }
    }
     
    a[g.x][g.y] = 1;
    for(int i = 1; i <= tail; ++i)
        a[q[i].x][q[i].y] = 1;
    if (u == t) return u.d;
    else return 0x7fffffff;
}
 
queue <int> Q;
int dist[4003], inq[4003];
 
void spfa(int s) {
    memset(dist, 127, sizeof(int) * (tot + 1));
    Q.push(s); dist[s] = 0; inq[s] = true;
    int u;
    while (!Q.empty()) {
        u = Q.front(); Q.pop(); inq[u] = false;
        for(int i = point[u]; i; i = E[i].nxt)
            if (dist[u] + E[i].w < dist[E[i].to]) {
                dist[E[i].to] = dist[u] + E[i].w;
                if (!inq[E[i].to]) {
                    Q.push(E[i].to);
                    inq[E[i].to] = true;
                }
            }
    }
}
 
int main() {
    n = in(); m = in(); qq = in();
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j)
            a[i][j] = in();
     
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j)
            if (a[i][j] == 1)
                for(int d = 0; d < 4; ++d)
                    if (can(i + dx[d], j + dy[d]))
                        number[i][j][d] = ++tot;
     
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j)
            if (a[i][j] == 1) dealwith(i, j);
     
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= m; ++j)
            if (a[i][j] == 1)
                for(int d = 0; d < 4; ++d)
                    if (can(i + dx[d], j + dy[d]))
                        ins(number[i][j][d], number[i + dx[d]][j + dy[d]][(d + 2) % 4], 1);
     
    ++tot;
    Point e, s, t;
    int now = cnt, ans;
    while (qq--) {
        e.x = in(); e.y = in(); s.x = in(); s.y = in(); t.x = in(); t.y = in();
        if (s == t) {puts("0"); continue;}
        cnt = now; point[tot] = 0;
        for(int d = 0; d < 4; ++d)
            if (can(s.x + dx[d], s.y + dy[d]))
                ins(tot, number[s.x][s.y][d], dis(s, e, Point(s.x + dx[d], s.y + dy[d], 0)));
        spfa(tot);
        ans = 0x7fffffff;
        for(int d = 0; d < 4; ++d)
            ans = min(ans, dist[number[t.x][t.y][d]]);
        printf("%d\n", ans == 2139062143 ? -1 : ans);
    }
     
    return 0;
}

终于A掉了。注意特判起点和终点相同

posted @   abclzr  阅读(363)  评论(0编辑  收藏  举报
努力加载评论中...
点击右上角即可分享
微信分享提示