pandas学习-基础用法
导入数据、数据的基本操作¶
导入libraries¶
import pandas as pd
import numpy as np
import os
导入数据¶
file_path = os.path.abspath('data/chipotle.tsv')
file_path
'D:\\python_jupyter\\mine_python_notes\\07_Pandas\\data\\chipotle.tsv'
chipo = pd.read_csv(file_path, sep = '\t')
chipo
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | $2.39 |
1 | 1 | 1 | Izze | [Clementine] | $3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | $3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | $2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | $16.98 |
... | ... | ... | ... | ... | ... |
4617 | 1833 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Black Beans, Sour ... | $11.75 |
4618 | 1833 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Sour Cream, Cheese... | $11.75 |
4619 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Pinto... | $11.25 |
4620 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Lettu... | $8.75 |
4621 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Pinto... | $8.75 |
4622 rows × 5 columns
查看前10行数据¶
chipo.head(10)
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | $2.39 |
1 | 1 | 1 | Izze | [Clementine] | $3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | $3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | $2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | $16.98 |
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | $10.98 |
6 | 3 | 1 | Side of Chips | NaN | $1.69 |
7 | 4 | 1 | Steak Burrito | [Tomatillo Red Chili Salsa, [Fajita Vegetables... | $11.75 |
8 | 4 | 1 | Steak Soft Tacos | [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... | $9.25 |
9 | 5 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... | $9.25 |
查看数据集中的数据量¶
chipo.shape
(4622, 5)
# 数据行数
chipo.shape[0]
4622
chipo.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4622 entries, 0 to 4621 Data columns (total 5 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 order_id 4622 non-null int64 1 quantity 4622 non-null int64 2 item_name 4622 non-null object 3 choice_description 3376 non-null object 4 item_price 4622 non-null object dtypes: int64(2), object(3) memory usage: 180.7+ KB
查看数据集的列数¶
chipo.shape[1]
5
打印出列名称¶
chipo.columns
Index(['order_id', 'quantity', 'item_name', 'choice_description', 'item_price'], dtype='object')
数据集的索引¶
chipo.index
RangeIndex(start=0, stop=4622, step=1)
汇总排序¶
c = chipo.groupby('item_name')
c = c.sum('order_id')
c = c.sort_values(['quantity'], ascending=False)
c.head(10)
order_id | quantity | |
---|---|---|
item_name | ||
Chicken Bowl | 713926 | 761 |
Chicken Burrito | 497303 | 591 |
Chips and Guacamole | 449959 | 506 |
Steak Burrito | 328437 | 386 |
Canned Soft Drink | 304753 | 351 |
Chips | 208004 | 230 |
Steak Bowl | 193752 | 221 |
Bottled Water | 175944 | 211 |
Chips and Fresh Tomato Salsa | 100419 | 130 |
Canned Soda | 76396 | 126 |
c = chipo.groupby('choice_description').sum('order_id')
c = c.sort_values(['quantity'], ascending=False)
c.head(10)
order_id | quantity | |
---|---|---|
choice_description | ||
[Diet Coke] | 123455 | 159 |
[Coke] | 122752 | 143 |
[Sprite] | 80426 | 89 |
[Fresh Tomato Salsa, [Rice, Black Beans, Cheese, Sour Cream, Lettuce]] | 43088 | 49 |
[Fresh Tomato Salsa, [Rice, Black Beans, Cheese, Sour Cream]] | 36041 | 42 |
[Fresh Tomato Salsa, [Rice, Black Beans, Cheese, Sour Cream, Guacamole, Lettuce]] | 37550 | 40 |
[Lemonade] | 31892 | 36 |
[Fresh Tomato Salsa (Mild), [Pinto Beans, Rice, Cheese, Sour Cream]] | 24432 | 36 |
[Coca Cola] | 19282 | 32 |
[Fresh Tomato Salsa, [Rice, Cheese, Sour Cream, Lettuce]] | 29614 | 30 |
列quantity数量统计¶
chipo.quantity.sum()
4972
查看列类型¶
chipo.item_price.dtype
dtype('O')
使用lambda函数转化数据类型¶
apply
函数的作用是将一个函数应用到 DataFrame 或 Series 的每一行或每一列上,然后返回一个新的DataFrame
或Series
。这个函数可以是内置的函数,也可以是用户自定义的函数。
df.apply(func, axis=0)
df 是一个 DataFrame,func 是要应用的函数,axis 是指定函数应用的方向,取值为 0 或 1。当 axis=0 时,表示对每一列应用函数;当 axis=1 时,表示对每一行应用函数。
func = lambda x : float(x[1:-1])
chipo.item_price = chipo.item_price.apply(func)
# 或者使用 列表推导式
# chipo.item_price = [float(val[1:]) for val in chipo.item_price]
chipo.item_price.dtype
dtype('float64')
chipo.item_price
0 2.39 1 3.39 2 3.39 3 2.39 4 16.98 ... 4617 11.75 4618 11.75 4619 11.25 4620 8.75 4621 8.75 Name: item_price, Length: 4622, dtype: float64
统计总价¶
(chipo.quantity * chipo.item_price).sum()
39237.02
c = chipo.order_id.value_counts()
c
926 23 1483 14 205 12 759 11 1786 11 .. 768 1 341 1 1048 1 94 1 1199 1 Name: order_id, Length: 1834, dtype: int64
c.count()
1834
chipo.item_name.value_counts().count()
50
过滤和排序数据¶
drop_duplicates函数用于去除DataFrame中的重复行。
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)
- subset:指定要考虑的列名或列名的列表。默认值为None,表示考虑所有列。
- keep:指定保留哪个重复的行。可选值为'first'(保留第一个出现的重复行)、'last'(保留最后一个出现的重复行)或False(删除所有重复行)。默认值为'first'。
- inplace:指定是否在原始DataFrame上进行修改。如果为True,则在原始DataFrame上删除重复行并返回None。如果为False(默认值),则返回一个新的DataFrame,其中删除了重复行。
data = {'name': ['John', 'Mary', 'John', 'Peter'],
'city': ['London', 'Paris', 'London', 'Berlin'],
'age':[10, 20, 10 ,40]}
df = pd.DataFrame(data)
# 删除所有重复行
df.drop_duplicates(inplace=True)
df
name | city | age | |
---|---|---|---|
0 | John | London | 10 |
1 | Mary | Paris | 20 |
3 | Peter | Berlin | 40 |
统计超过$10的产品¶
chipo_filtered = chipo.drop_duplicates(['item_name','quantity','choice_description'])
# chipo_filtered = chipo_filtered[chipo_filtered.quantity==1]
chipo_filtered
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 |
... | ... | ... | ... | ... | ... |
4602 | 1827 | 1 | Barbacoa Burrito | [Tomatillo Green Chili Salsa] | 9.25 |
4607 | 1829 | 1 | Steak Burrito | [Tomatillo Green Chili Salsa, [Rice, Cheese, S... | 11.75 |
4610 | 1830 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Sour Cream, Cheese... | 11.75 |
4611 | 1830 | 1 | Veggie Burrito | [Tomatillo Green Chili Salsa, [Rice, Fajita Ve... | 11.25 |
4612 | 1831 | 1 | Carnitas Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Rice,... | 9.25 |
1949 rows × 5 columns
# 查找产品数量等于1
chipo_one_prd = chipo_filtered[chipo_filtered.quantity==1]
chipo_one_prd
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 |
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | 10.98 |
... | ... | ... | ... | ... | ... |
4602 | 1827 | 1 | Barbacoa Burrito | [Tomatillo Green Chili Salsa] | 9.25 |
4607 | 1829 | 1 | Steak Burrito | [Tomatillo Green Chili Salsa, [Rice, Cheese, S... | 11.75 |
4610 | 1830 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Sour Cream, Cheese... | 11.75 |
4611 | 1830 | 1 | Veggie Burrito | [Tomatillo Green Chili Salsa, [Rice, Fajita Ve... | 11.25 |
4612 | 1831 | 1 | Carnitas Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Rice,... | 9.25 |
1806 rows × 5 columns
chipo_one_prd[chipo_one_prd['item_price']>10].item_name
5 Chicken Bowl 7 Steak Burrito 13 Chicken Bowl 23 Chicken Burrito 39 Barbacoa Bowl ... 4593 Carnitas Bowl 4594 Barbacoa Bowl 4607 Steak Burrito 4610 Steak Burrito 4611 Veggie Burrito Name: item_name, Length: 685, dtype: object
chipo_one_prd.query('item_price>10').item_name.nunique()
25
多个条件查找¶
chipo[(chipo['item_name'] == 'Chicken Bowl') & (chipo['quantity'] == 1)]
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | 10.98 |
13 | 7 | 1 | Chicken Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Rice,... | 11.25 |
19 | 10 | 1 | Chicken Bowl | [Tomatillo Red Chili Salsa, [Fajita Vegetables... | 8.75 |
26 | 13 | 1 | Chicken Bowl | [Roasted Chili Corn Salsa (Medium), [Pinto Bea... | 8.49 |
42 | 20 | 1 | Chicken Bowl | [Roasted Chili Corn Salsa, [Rice, Black Beans,... | 11.25 |
... | ... | ... | ... | ... | ... |
4590 | 1825 | 1 | Chicken Bowl | [Roasted Chili Corn Salsa, [Rice, Black Beans,... | 11.25 |
4591 | 1825 | 1 | Chicken Bowl | [Tomatillo Red Chili Salsa, [Rice, Black Beans... | 8.75 |
4595 | 1826 | 1 | Chicken Bowl | [Tomatillo Green Chili Salsa, [Rice, Black Bea... | 8.75 |
4599 | 1827 | 1 | Chicken Bowl | [Roasted Chili Corn Salsa, [Cheese, Lettuce]] | 8.75 |
4604 | 1828 | 1 | Chicken Bowl | [Fresh Tomato Salsa, [Rice, Black Beans, Chees... | 8.75 |
693 rows × 5 columns
根据name排序¶
chipo.item_name.sort_values()
# 或者
chipo.sort_values(by='item_name')
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
3389 | 1360 | 2 | 6 Pack Soft Drink | [Diet Coke] | 12.98 |
341 | 148 | 1 | 6 Pack Soft Drink | [Diet Coke] | 6.49 |
1849 | 749 | 1 | 6 Pack Soft Drink | [Coke] | 6.49 |
1860 | 754 | 1 | 6 Pack Soft Drink | [Diet Coke] | 6.49 |
2713 | 1076 | 1 | 6 Pack Soft Drink | [Coke] | 6.49 |
... | ... | ... | ... | ... | ... |
2384 | 948 | 1 | Veggie Soft Tacos | [Roasted Chili Corn Salsa, [Fajita Vegetables,... | 8.75 |
781 | 322 | 1 | Veggie Soft Tacos | [Fresh Tomato Salsa, [Black Beans, Cheese, Sou... | 8.75 |
2851 | 1132 | 1 | Veggie Soft Tacos | [Roasted Chili Corn Salsa (Medium), [Black Bea... | 8.49 |
1699 | 688 | 1 | Veggie Soft Tacos | [Fresh Tomato Salsa, [Fajita Vegetables, Rice,... | 11.25 |
1395 | 567 | 1 | Veggie Soft Tacos | [Fresh Tomato Salsa (Mild), [Pinto Beans, Rice... | 8.49 |
4622 rows × 5 columns
查询最贵的商品数量是多少¶
chipo.sort_values(by='item_price', ascending=False).head(1)
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
3598 | 1443 | 15 | Chips and Fresh Tomato Salsa | NaN | 44.25 |
其他条件检索¶
chipo_salad = chipo[chipo.item_name == "Veggie Salad Bowl"]
len(chipo_salad)
18
chipo_drink_steak_bowl = chipo[(chipo.item_name == "Canned Soda") & (chipo.quantity > 1)]
len(chipo_drink_steak_bowl)
20
chipo[chipo.item_name.str.startswith('C')]
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 |
5 | 3 | 1 | Chicken Bowl | [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... | 10.98 |
10 | 5 | 1 | Chips and Guacamole | NaN | 4.45 |
... | ... | ... | ... | ... | ... |
4615 | 1832 | 1 | Chicken Soft Tacos | [Fresh Tomato Salsa, [Rice, Cheese, Sour Cream]] | 8.75 |
4616 | 1832 | 1 | Chips and Guacamole | NaN | 4.45 |
4619 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Pinto... | 11.25 |
4620 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Lettu... | 8.75 |
4621 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Pinto... | 8.75 |
3131 rows × 5 columns
# 根据列明来筛选
chipo[['item_name','item_price']]
item_name | item_price | |
---|---|---|
0 | Chips and Fresh Tomato Salsa | 2.39 |
1 | Izze | 3.39 |
2 | Nantucket Nectar | 3.39 |
3 | Chips and Tomatillo-Green Chili Salsa | 2.39 |
4 | Chicken Bowl | 16.98 |
... | ... | ... |
4617 | Steak Burrito | 11.75 |
4618 | Steak Burrito | 11.75 |
4619 | Chicken Salad Bowl | 11.25 |
4620 | Chicken Salad Bowl | 8.75 |
4621 | Chicken Salad Bowl | 8.75 |
4622 rows × 2 columns
chipo[(chipo['item_name'] != 'Steak Burrito') & (chipo.item_name != 'Chicken Salad Bowl')]
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 |
... | ... | ... | ... | ... | ... |
4612 | 1831 | 1 | Carnitas Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Rice,... | 9.25 |
4613 | 1831 | 1 | Chips | NaN | 2.15 |
4614 | 1831 | 1 | Bottled Water | NaN | 1.50 |
4615 | 1832 | 1 | Chicken Soft Tacos | [Fresh Tomato Salsa, [Rice, Cheese, Sour Cream]] | 8.75 |
4616 | 1832 | 1 | Chips and Guacamole | NaN | 4.45 |
4144 rows × 5 columns
使用.iloc通过传递的整数的位置进行切片¶
在 pandas 中,iloc 是用于基于位置进行索引和选择数据的方法。它的基本语法是df.iloc[row_index, column_index]
,其中 df 是一个 DataFrame 对象。
iloc 方法的主要用途有以下几个:
-
选择行和列:可以使用 iloc 方法选择指定的行和列。例如,df.iloc[3, 0] 选择第 3 行、第 0 列的值。
-
切片:可以使用 iloc 方法进行切片操作,选择指定范围内的行和列。例如,df.iloc[1:3, 0:2] 选择第 1 到 2 行和第 0 到 1 列。
-
布尔索引:可以使用布尔条件进行索引,选择满足条件的行和列。例如,df.iloc[df['A'] > 0, [0, 1]] 选择满足 'A' 列大于 0 的行,并选择第 0 和 1 列。
-
设置值:可以使用 iloc 方法设置指定位置的值。例如,df.iloc[2, 0] = 10 将第 2 行、第 0 列的值设置为 10。
需要注意的是,iloc 方法使用的是位置索引,即指定的行和列的位置必须存在于 DataFrame 中。如果要使用标签索引,可以使用 loc 方法。另外,iloc 方法也支持多个位置索引的列表或数组,以选择多个行或列。
# :表示所有,0:3表示从0列到第3列
chipo.iloc[:, 0:3]
order_id | quantity | item_name | |
---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa |
1 | 1 | 1 | Izze |
2 | 1 | 1 | Nantucket Nectar |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa |
4 | 2 | 2 | Chicken Bowl |
... | ... | ... | ... |
4617 | 1833 | 1 | Steak Burrito |
4618 | 1833 | 1 | Steak Burrito |
4619 | 1834 | 1 | Chicken Salad Bowl |
4620 | 1834 | 1 | Chicken Salad Bowl |
4621 | 1834 | 1 | Chicken Salad Bowl |
4622 rows × 3 columns
chipo.iloc[0:10, 0:3]
order_id | quantity | item_name | |
---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa |
1 | 1 | 1 | Izze |
2 | 1 | 1 | Nantucket Nectar |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa |
4 | 2 | 2 | Chicken Bowl |
5 | 3 | 1 | Chicken Bowl |
6 | 3 | 1 | Side of Chips |
7 | 4 | 1 | Steak Burrito |
8 | 4 | 1 | Steak Soft Tacos |
9 | 5 | 1 | Steak Burrito |
在 pandas 中,loc 是用于基于标签进行索引和选择数据的方法。它的基本语法是df.loc[row_label, column_label]
,其中 df 是一个 DataFrame 对象。
loc 方法的主要用途有以下几个:
-
选择行和列:可以使用 loc 方法选择指定的行和列。例如,df.loc[3, 'A'] 选择第 3 行、名为 'A' 的列的值。
-
切片:可以使用 loc 方法进行切片操作,选择指定范围内的行和列。例如,df.loc[1:3, 'A':'C'] 选择第 1 到 3 行和名为 'A' 到 'C' 的列。
-
布尔索引:可以使用布尔条件进行索引,选择满足条件的行和列。例如,df.loc[df['A'] > 0, ['A', 'B']] 选择满足 'A' 列大于 0 的行,并选择名为 'A' 和 'B' 的列。
-
设置值:可以使用 loc 方法设置指定位置的值。例如,df.loc[2, 'A'] = 10 将第 2 行、名为 'A' 的列的值设置为 10。
需要注意的是,loc 方法使用的是标签索引,即指定的行和列的标签必须存在于 DataFrame 中。另外,loc 方法也支持多个标签的列表或数组,以选择多个行或列。
chipo.loc[chipo.item_name.isin(['Chicken Bowl','Steak Burrito']), ['item_name','item_price']]
item_name | item_price | |
---|---|---|
4 | Chicken Bowl | 16.98 |
5 | Chicken Bowl | 10.98 |
7 | Steak Burrito | 11.75 |
9 | Steak Burrito | 9.25 |
13 | Chicken Bowl | 11.25 |
... | ... | ... |
4604 | Chicken Bowl | 8.75 |
4607 | Steak Burrito | 11.75 |
4610 | Steak Burrito | 11.75 |
4617 | Steak Burrito | 11.75 |
4618 | Steak Burrito | 11.75 |
1094 rows × 2 columns
chipo
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
1 | 1 | 1 | Izze | [Clementine] | 3.39 |
2 | 1 | 1 | Nantucket Nectar | [Apple] | 3.39 |
3 | 1 | 1 | Chips and Tomatillo-Green Chili Salsa | NaN | 2.39 |
4 | 2 | 2 | Chicken Bowl | [Tomatillo-Red Chili Salsa (Hot), [Black Beans... | 16.98 |
... | ... | ... | ... | ... | ... |
4617 | 1833 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Black Beans, Sour ... | 11.75 |
4618 | 1833 | 1 | Steak Burrito | [Fresh Tomato Salsa, [Rice, Sour Cream, Cheese... | 11.75 |
4619 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Pinto... | 11.25 |
4620 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Lettu... | 8.75 |
4621 | 1834 | 1 | Chicken Salad Bowl | [Fresh Tomato Salsa, [Fajita Vegetables, Pinto... | 8.75 |
4622 rows × 5 columns
chipo.loc[chipo.item_name == 'Chips and Fresh Tomato Salsa',]
order_id | quantity | item_name | choice_description | item_price | |
---|---|---|---|---|---|
0 | 1 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
25 | 13 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
55 | 25 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.39 |
89 | 39 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.95 |
183 | 82 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.95 |
... | ... | ... | ... | ... | ... |
4231 | 1689 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.95 |
4318 | 1722 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.95 |
4324 | 1725 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.95 |
4425 | 1764 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.95 |
4503 | 1790 | 1 | Chips and Fresh Tomato Salsa | NaN | 2.95 |
110 rows × 5 columns