【转】动态规划:最长递增子序列Longest Increasing Subsequence
转自:https://www.cnblogs.com/coffy/p/5878915.html
设f(i)表示L中以ai为末元素的最长递增子序列的长度。则有如下的递推方程:
这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj,即j<i且aj<ai。如果这样的元素存在,那么对所有aj,都有一个以aj为末元素的最长递增子序列,设其长度为f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1,即以ai为末元素的最长递增子序列,等于以使f(j)最大的那个aj为末元素的递增子序列,再加上ai;如果这样的元素不存在,那么ai自身构成一个长度为1的以ai为末元素的递增子序列。
public void lis(float[] L) { int n = L.length; int[] f = new int[n];//用于存放f(i)值; f[0]=1;//以第a1为末元素的最长递增子序列长度为1; for(int i = 1;i<n;i++)//循环n-1次 { f[i]=1;//f[i]的最小值为1; for(int j=0;j<i;j++)//循环i 次 { if(L[j]<L[i]&&f[j]+1>f[i])//f[j]+1>f[i]意思是以j结尾的递增序列加上元素i之后,整个递增序列变得更长了 f[i]=f[j]+1;//更新f[i]的值。// } } //f[i]的值是以L[i]为结尾的递增子序列的长度,需要求LIS,所以要取其中的最大值。 return max(f); }