从rtmp拉流后进行python鼻子定位demo

本文讲述从在线直播拉流中通过dlib定位鼻子的demo

拉流地址:rtmp://58.200.131.2:1935/livetv/hunantv            湖南卫视

效果:

 

 

 

 

 

 代码较容易,主逻辑都是和普通本地摄像头一样的,dlib部分要重点看看:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import cv2
import threading
import dlib
import imutils
from imutils import face_utils
 
 
predictor_path = 'models\\shape_predictor_68_face_landmarks.dat'
face_rec_model_path = 'models\\dlib_face_recognition_resnet_model_v1.dat'
 
predictor = dlib.shape_predictor(predictor_path)
detector = dlib.get_frontal_face_detector()
 
(noseStart, noseEnd) = face_utils.FACIAL_LANDMARKS_IDXS["nose"]
 
 
class Producer(threading.Thread):
    """docstring for Producer"""
 
    def __init__(self, rtmp_str):
 
        super(Producer, self).__init__()
 
        self.rtmp_str = rtmp_str
 
        # 通过cv2中的类获取视频流操作对象cap
        self.cap = cv2.VideoCapture(self.rtmp_str)
 
        # 调用cv2方法获取cap的视频帧(帧:每秒多少张图片)
        # fps = self.cap.get(cv2.CAP_PROP_FPS)
        self.fps = self.cap.get(cv2.CAP_PROP_FPS)
        print(self.fps)
 
        # 获取cap视频流的每帧大小
        self.width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        self.height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.size = (self.width, self.height)
        print(self.size)
 
    def run(self):
 
        print('in producer')
 
        ret, image = self.cap.read()
 
        while ret:
            frame = imutils.resize(image, width=600)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            rects = detector(gray, 0)
            for rect in rects:
                shape = predictor(gray, rect)
                shape = face_utils.shape_to_np(shape)
                nose = shape[noseStart:noseEnd]
                noseHull = cv2.convexHull(nose)
                cv2.drawContours(frame, [noseHull], -1, (0, 255, 0), 1)
                cv2.putText(frame, "nose", (nose[0][0], nose[0][1]), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
 
            cv2.imshow("Frame", frame)
 
            cv2.waitKey(int(1000 / int(self.fps)))  # 延迟
 
            if cv2.waitKey(1) & 0xFF == ord('q'):
                self.cap.release()
                cv2.destroyAllWindows()
                break
 
            ret, image = self.cap.read()
 
 
if __name__ == '__main__':
    print('run program')
    rtmp_str = 'rtmp://58.200.131.2:1935/livetv/hunantv'  # 湖南卫视
    producer = Producer(rtmp_str)
    producer.start()

  

需要安装的python库

1
2
3
pip install imutils
pip install opencv-python
pip install dlib

  

依赖的dlib模型文件:

链接:https://pan.baidu.com/s/1hw0bznAO7-7f1AIvYxzVBA
提取码:8691

 

posted @   McKay  阅读(1532)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
点击右上角即可分享
微信分享提示