手势识别控制pygame精灵

步骤:

  1. 编写简易pygame精灵游戏(只实现键盘上下左右控制) 
  2. 解决opencv手势识别核心问题
  3. 上述2部分对接上

 

 pygame部分我们只加载个背景,然后里面放1只乌龟精灵,用键盘的上下左右键来控制,直接给出代码:

乌龟精灵代码(DemoSpirit.py):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pygame
 
 
class DemoSpirit(pygame.sprite.Sprite):
    def __init__(self, target, screen_size, position):
        pygame.sprite.Sprite.__init__(self)
        self.target_surface = target
        self.screen_size = screen_size
        self.position = position
        self.image = pygame.image.load("resources\\wugui.png").convert_alpha()
        self.image = pygame.transform.smoothscale(self.image, (50, 50))
 
    def draw(self):
        # random_text = font_200.render('***', True, white_color)
        self.target_surface.blit(self.image, self.position)
 
    def move_left(self):
        if self.position[0]-10 > 0:
            self.position=(self.position[0]-10, self.position[1])
 
    def move_right(self):
        if self.position[0]+10 < self.screen_size[0]:
            self.position=(self.position[0]+10, self.position[1])
 
    def move_up(self):
        if self.position[1] - 10 > 0:
            self.position=(self.position[0], self.position[1]-10)
 
    def move_down(self):
        if self.position[1] + 10 < self.screen_size[1]:
            self.position=(self.position[0], self.position[1]+10)

  

游戏主循环代码(game-main.py):

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pygame
from pygame.locals import *
 
background_image_filename = 'resources/back.jpg'
 
pygame.init()  # 2、初始化init() 及设置
screen_list = pygame.display.list_modes()
screen_size = screen_list[16]
screen = pygame.display.set_mode(screen_size)
background = pygame.image.load(background_image_filename).convert()
background = pygame.transform.scale(background, screen_size)
 
clock = pygame.time.Clock()
 
pos = (screen_size[0] * 0.6, screen_size[1] * 0.3)
 
from cvgame.DemoSpirit import DemoSpirit
 
s1 = DemoSpirit(screen, screen_size, pos)
 
# 开始游戏循环
while True:
    for event in pygame.event.get():
        if event.type == KEYDOWN:
            if event.key == K_UP:
                s1.move_up()
            if event.key == K_DOWN:
                s1.move_down()
            if event.key == K_LEFT:
                s1.move_left()
            if event.key == K_RIGHT:
                s1.move_right()
            elif event.key == K_q:
                exit()
    screen.blit(background, (0, 0))
    s1.draw()
 
    pygame.display.update()  # 6、update 更新屏幕显示
    clock.tick(100)  

 

 效果图:

 

 

接下来,进入手势识别领域

我们是做了个小技巧来侧面绕过手跟踪问题,如下图(直接指定了左手右手监控区域,这样就不需要动态跟踪手的rect了):

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
while success:
    success, img = cap.read()
    frame = imutils.resize(img, width=700)
 
    cv2.rectangle(frame, (50, 0), (264, 250), (170, 170, 0))                          #左手区域
    cv2.rectangle(frame, (426, 0), (640, 250), (170, 170, 0))                         #右手区域
 
    cv2.imshow("Frame_Original", frame)                                               #显示
 
    rightHand = frame[0:250, 50:264]
    leftHand = frame[0:210, 426:640]
 
    left_hand_event = grdetect(leftHand, fgbg_left, verbose=True)                     #检测左手手势识别事件
    right_hand_event = grdetect(rightHand, fgbg_right, verbose=True)                  #检测右手手势识别事件
    print('left hand: ', left_hand_event, 'right hand: ', right_hand_event)           #打印出来检测结果

  

主要看看grdetect和fgbg_left/fgbg_right:

 

 看上图,除了手之外,还有个大背景,首先得把背景去掉,才能识别出前景色-手,fgbg_left/fgbg_right其实就是用来干着活的,分别为左手、右手的背景减噪用的

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
fgbg_left = cv2.createBackgroundSubtractorMOG2()
fgbg_right = cv2.createBackgroundSubtractorMOG2()
 
def train_bg(fgbg, roi):
    fgbg.apply(roi)
 
 
def start():
    global fgbg_left
    global fgbg_right
    trainingBackgroundCount = 200                           #200次来训练背景减噪训练
    while trainingBackgroundCount>0:
        success, img = cap.read()
        frame = imutils.resize(img, width=700)
        cv2.imshow("Frame_Original", frame)
        rightHand = frame[0:250, 50:264]
        leftHand = frame[0:210, 426:640]
 
        train_bg(fgbg_left, leftHand)                      #训练左手区域
        train_bg(fgbg_right, rightHand)                    #训练右手区域
 
        key = cv2.waitKey(1) & 0xFF
        trainingBackgroundCount -= 1  

 

再来看看核心函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
def grdetect(array, fgbg, verbose=False):
    event = {'type': 'none'}
    copy = array.copy()
    array = _remove_background(array, fgbg)  #移除背景,会用到背景减噪(上述提到)
    thresh = _bodyskin_detetc(array)         #高斯+二值化
    contours = _get_contours(thresh.copy())  #计算图像的轮廓点,可能会返回多个轮廓
    largecont = max(contours, key=lambda contour: cv2.contourArea(contour))   #选择面积最大的轮廓
    hull = cv2.convexHull(largecont, returnPoints=False)                      #根据轮廓点计算凸点
    defects = cv2.convexityDefects(largecont, hull)                           #计算轮廓的凹点(凸缺陷)
    if defects is not None:
        # 利用凹陷点坐标, 根据余弦定理计算图像中锐角个数
        copy, ndefects = _get_defects_count(copy, largecont, defects, verbose=verbose)
        # 根据锐角个数判断手势, 会有一定的误差
        if ndefects == 0:
            event['type'] = '0'
        elif ndefects == 1:
            event['type'] = '2'
        elif ndefects == 2:
            event['type'] = '3'
        elif ndefects == 3:
            event['type'] = '4'
        elif ndefects == 4:
            event['type'] = '5'
    return event

  

剩下的就是上述的支持函数了

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def _remove_background(frame, fgbg):
    fgmask = fgbg.apply(frame, learningRate=0)                       #learningRate=0代表不更新背景噪声,也就是不学习
    kernel = np.ones((3, 3), np.uint8)
    fgmask = cv2.erode(fgmask, kernel, iterations=1)
    res = cv2.bitwise_and(frame, frame, mask=fgmask)
    return res
 
def _bodyskin_detetc(frame):
    # 肤色检测: YCrCb之Cr分量 + OTSU二值化
    ycrcb = cv2.cvtColor(frame, cv2.COLOR_BGR2YCrCb)  # 分解为YUV图像,得到CR分量
    (_, cr, _) = cv2.split(ycrcb)
    cr1 = cv2.GaussianBlur(cr, (5, 5), 0# 高斯滤波
    _, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)  # OTSU图像二值化
    return skin
 
 
# 检测图像中的凸点(手指)个数
def _get_contours(array):
    # 利用findContours检测图像中的轮廓, 其中返回值contours包含了图像中所有轮廓的坐标点
    contours, _ = cv2.findContours(array, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    return contours
 
 
_COLOR_RED = (0, 0, 255)
 
 
def _get_eucledian_distance(beg, end):  # 计算两点之间的坐标
    i = str(beg).split(',')
    j = i[0].split('(')
    x1 = int(j[1])
    k = i[1].split(')')
    y1 = int(k[0])
    i = str(end).split(',')
    j = i[0].split('(')
    x2 = int(j[1])
    k = i[1].split(')')
    y2 = int(k[0])
    d = math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))
    return d
 
 
# 根据图像中凹凸点中的 (开始点, 结束点, 远点)的坐标, 利用余弦定理计算两根手指之间的夹角, 其必为锐角, 根据锐角的个数判别手势.
def _get_defects_count(array, contour, defects, verbose=False):
    ndefects = 0
    for i in range(defects.shape[0]):
        s, e, f, _ = defects[i, 0]
        beg = tuple(contour[s][0])
        end = tuple(contour[e][0])
        far = tuple(contour[f][0])
        a = _get_eucledian_distance(beg, end)
        b = _get_eucledian_distance(beg, far)
        c = _get_eucledian_distance(end, far)
        angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))  # * 57
        if angle <= math.pi / 2# 90:
            ndefects = ndefects + 1
            if verbose:
                cv2.circle(array, far, 3, _COLOR_RED, -1)
        if verbose:
            cv2.line(array, beg, end, _COLOR_RED, 1)
    return array, ndefects

  

 

posted @   McKay  阅读(554)  评论(0编辑  收藏  举报
编辑推荐:
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
阅读排行:
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】
点击右上角即可分享
微信分享提示