A*寻路算法 python实现
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | # -*- coding: utf-8 -*- import math import cv2 as cv class Point( object ): def __init__( self , position, parent): self .position = position self .parent = parent self .F = 0 self .G = 0 self .H = 0 # 全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) # 把输入图像灰度化 # 直接阈值化是对输入的单通道矩阵逐像素进行阈值分割。 ret, binary = cv.threshold(gray, 0 , 255 , cv.THRESH_BINARY | cv.THRESH_TRIANGLE) # print("threshold value %s" % ret) # cv.imshow("binary0", binary) return binary src = cv.imread( 'C:/tensor/map.jpg' ) # cv.imshow('input_image', src) bi = threshold_demo(src) def estimate_distance(from_point, target_point): return math.sqrt(math. pow (target_point.position[ 0 ] - from_point.position[ 0 ], 2 ) + math. pow ( target_point.position[ 1 ] - from_point.position[ 1 ], 2 )) def is_same_node(point, target_point): if point.position[ 0 ] = = target_point.position[ 0 ] and point.position[ 1 ] = = target_point.position[ 1 ]: return True return False def is_point_in_list(point, p_list): for p in p_list: if is_same_node(p, point): return True return False def get_point_from_list(point, p_list): for p in p_list: if is_same_node(p, point): return p return None def display_path(last_point): point_path = [last_point] last_point = last_point.parent while last_point is not None : point_path.append(last_point) last_point = last_point.parent point_path.reverse() path_str = '' for p in point_path: path_str + = '[' + str (p.position[ 0 ]) + ',' + str (p.position[ 1 ]) + ']-->' print (path_str) image = src for point in point_path: cv.circle(image, (point.position[ 1 ], point.position[ 0 ]), 1 , ( 0 , 0 , 255 ), 1 ) image = cv.resize(image, (bi.shape[ 1 ] * 4 , bi.shape[ 0 ] * 4 )) cv.imshow( "final" , image) def filter_not_reachables( map , points): new_points = [] for point in points: if map [point.position[ 0 ]][point.position[ 1 ]] = = 255 : new_points.append(point) return new_points def get_periphery_points( map , point): points = [] x = point.position[ 0 ] y = point.position[ 1 ] points.append(Point([x - 1 , y - 1 ], None )) points.append(Point([x, y - 1 ], None )) points.append(Point([x + 1 , y - 1 ], None )) points.append(Point([x - 1 , y], None )) points.append(Point([x + 1 , y], None )) points.append(Point([x - 1 , y + 1 ], None )) points.append(Point([x, y + 1 ], None )) points.append(Point([x + 1 , y + 1 ], None )) valid_points = [] for p in points: if 0 < = p.position[ 0 ] < map .shape[ 0 ] and 0 < = p.position[ 1 ] < map .shape[ 1 ]: valid_points.append(p) return valid_points def pick_one_min_F_point(p_list): if len (p_list) = = 0 : return None if len (p_list) = = 1 : return p_list[ 0 ] min_F = p_list[ 0 ].F min_idx = 0 for idx, p in enumerate (p_list[ 1 :]): if p.F < min_F: min_F = p.F min_idx = idx + 1 return p_list[min_idx] def filter_ignored(points): new_points = [] if len (points) < = 0 : return new_points for p in points: if p.ignore: continue new_points.append(p) return new_points def a_star( map ): width, height = map .shape print ( 'width: ' , width, 'height: ' , height) print (width * height) target_point = Point([width - 1 , height - 1 ], None ) from_point = Point([ 0 , 0 ], None ) from_point.G = 0 from_point.H = estimate_distance(from_point, target_point) from_point.F = from_point.G + from_point.H open_list = [] close_list = [] open_list.append(from_point) while len (open_list) > 0 : cur_point = pick_one_min_F_point(open_list) if cur_point is None : raise ValueError( '无法找到可达路径' ) points = get_periphery_points( map , cur_point) points = filter_not_reachables( map , points) for point in points: if is_point_in_list(point, open_list): point.new_added = False point.ignore = False p = get_point_from_list(point, open_list) point.parent = p.parent point.F = p.F point.G = p.G point.H = p.H elif is_point_in_list(point, close_list): point.new_added = False point.ignore = True p = get_point_from_list(point, close_list) point.parent = p.parent point.F = p.F point.G = p.G point.H = p.H else : point.new_added = True point.ignore = False open_list.append(point) points = filter_ignored(points) for point in points: if point.new_added: point.parent = cur_point # 计算FGH point.G = cur_point.G + 1 point.H = estimate_distance(point, target_point) point.F = point.G + point.H else : # 计算FGH old_f = point.G + point.H new_f = cur_point.G + 1 + point.H # 比较新的和老的F值哪个大 if new_f < old_f: # 覆盖新的FGH/PARENT point.parent = cur_point point.G = cur_point.G + 1 point.F = point.G + point.H for point in points: if is_same_node(point, target_point): display_path(point) return open_list.remove(cur_point) close_list.append(cur_point) a_star(bi) cv.waitKey( 0 ) cv.destroyAllWindows() |
自省推动进步,视野决定未来。
心怀远大理想。
为了家庭幸福而努力。
商业合作请看此处:https://www.magicube.ai
心怀远大理想。
为了家庭幸福而努力。
商业合作请看此处:https://www.magicube.ai
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 地球OL攻略 —— 某应届生求职总结
· 周边上新:园子的第一款马克杯温暖上架
· Open-Sora 2.0 重磅开源!
· 提示词工程——AI应用必不可少的技术
· .NET周刊【3月第1期 2025-03-02】