PID算法图形 python
# -*- coding: utf-8 -*- class PID: def __init__(self, P=0.2, I=0.0, D=0.0): self.Kp = P self.Ki = I self.Kd = D self.sample_time = 0.00 self.current_time = time.time() self.last_time = self.current_time self.clear() def clear(self): self.SetPoint = 0.0 self.PTerm = 0.0 self.ITerm = 0.0 self.DTerm = 0.0 self.last_error = 0.0 self.int_error = 0.0 self.windup_guard = 20.0 self.output = 0.0 def update(self, feedback_value): error = self.SetPoint - feedback_value self.current_time = time.time() delta_time = self.current_time - self.last_time delta_error = error - self.last_error if (delta_time >= self.sample_time): self.PTerm = self.Kp * error # 比例 self.ITerm += error * delta_time # 积分 if (self.ITerm < -self.windup_guard): self.ITerm = -self.windup_guard elif (self.ITerm > self.windup_guard): self.ITerm = self.windup_guard self.DTerm = 0.0 if delta_time > 0: self.DTerm = delta_error / delta_time self.last_time = self.current_time self.last_error = error self.output = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm) def setKp(self, proportional_gain): self.Kp = proportional_gain def setKi(self, integral_gain): self.Ki = integral_gain def setKd(self, derivative_gain): self.Kd = derivative_gain def setWindup(self, windup): self.windup_guard = windup def setSampleTime(self, sample_time): self.sample_time = sample_time import time import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import make_interp_spline def test_pid(P=0.2, I=0.0, D=0.0, L=100): pid = PID(P, I, D) pid.SetPoint = 0.0 pid.setSampleTime(0.01) END = L feedback = 0 feedback_list = [] time_list = [] setpoint_list = [] for i in range(1, END): pid.update(feedback) output = pid.output # print(output) if pid.SetPoint > 0: feedback += output # (output - (1/i))控制系统的函数 if 9 <= i <= 40: pid.SetPoint = 1 elif i > 40: pid.SetPoint = 0.5 time.sleep(0.01) feedback_list.append(feedback) setpoint_list.append(pid.SetPoint) time_list.append(i) time_sm = np.array(time_list) time_smooth = np.linspace(time_sm.min(), time_sm.max(), 300) feedback_smooth = make_interp_spline(time_list, feedback_list)(time_smooth) plt.figure(0) plt.plot(time_smooth, feedback_smooth) plt.plot(time_list, setpoint_list) plt.xlabel('time (s)') plt.ylabel('PID (PV)') plt.title('TEST PID {}/{}/{}'.format(P, I, D)) plt.xlim((0, L)) plt.ylim((-0.5, 2)) plt.grid(True) # plt.show() plt.savefig('./images/TEST PID {}-{}-{}.jpg'.format(P, I, D)) plt.close() if __name__ == "__main__": test_pid(1.2, 1.0, 0.001, L=50) test_pid(1.2, 1.0, 0, L=50) test_pid(1.2, 0, 0, L=50) test_pid(0.8, 1.0, 0.001, L=50) test_pid(0.8, 1.0, 0, L=50) test_pid(0.8, 0, 0, L=50) test_pid(0.2, 0.0, 0.001, L=50) test_pid(0.2, 0.0, 0, L=50) test_pid(0.2, 0, 0, L=50) test_pid(0.8, 0, 0.001, L=50) test_pid(1.2, 0, 0.001, L=50) test_pid(0.7, 0.8, 0.001, L=50) test_pid(0.8, L=50)
模拟了电动机电压的输出:
- 从0秒开始到第9秒,要求输出电压为0V;
- 从第10秒开始到第40秒,要求输出电压为1V;
- 从第41秒开始到第50秒,要求输出电压为0.5V
橘黄色线代表上述需求(理想输出电压)
绿色线为PID算法输出带反馈积分的输出电压
看得到P(比例)部分 是一个最重要的参数、I(积分)部分能让两条线完全重合(可能过于理想,有待验证)、D(微分)部分会对电压产生微调的上下波动影响
PID算法的参数看来是能够影响元器件寿命的
自省推动进步,视野决定未来。
心怀远大理想。
为了家庭幸福而努力。
商业合作请看此处:https://www.magicube.ai
心怀远大理想。
为了家庭幸福而努力。
商业合作请看此处:https://www.magicube.ai