java线程:互斥锁与读写锁
两种互斥锁机制:
1、synchronized
2、ReentrantLock
ReentrantLock是jdk5的新特性,采用ReentrantLock可以完全替代替换synchronized传统的锁机制,而且采用ReentrantLock的方式更加面向对象,也更加灵活,网上有很多关于对比两者锁方式的文章,这里就不多口舌了,大家baidu、google一下就水落石出了。在本博客中也写关于这两种锁方式实现的经典例子《生产者消费者》。
synchronized方式:《java线程:三种方式实现生产者消费者问题_1》
ReentranLock方式:《java线程:三种方式实现生产者消费者问题_2》
关于读写锁,用语言解释不如直接用代码诠释,以下通过两个例子讲述读写锁以及读写锁的使用:
例子1:
- import java.util.HashMap;
- import java.util.Map;
- import java.util.concurrent.locks.ReadWriteLock;
- import java.util.concurrent.locks.ReentrantReadWriteLock;
- /**
- * @author amber2012
- *
- * 读写锁:ReadWriteLock
- *
- * 在多线程的环境下,对同一份数据进行读写,会涉及到线程安全的问题。比如在一个线程读取数据的时候,另外一个线程在
- * 写数据,而导致前后数据的不一致性;一个线程在写数据的时候,另一个线程也在写,同样也会导致线程前后看到的数据的
- * 不一致性。
- *
- * 这时候可以在读写方法中加入互斥锁,任何时候只能允许一个线程的一个读或写操作,而不允许其他线程的读或写操作,这
- * 样是可以解决这样以上的问题,但是效率却大打折扣了。因为在真实的业务场景中,一份数据,读取数据的操作次数通常高
- * 于写入数据的操作,而线程与线程间的读读操作是不涉及到线程安全的问题,没有必要加入互斥锁,只要在读-写,写-写期
- * 间上锁就行了。
- *
- * 对于这种情况,读写锁则最好的解决方案!
- *
- * 读写锁的机制:
- * "读-读"不互斥
- * "读-写"互斥
- * "写-写"互斥
- *
- * 即在任何时候必须保证:
- * 只有一个线程在写入;
- * 线程正在读取的时候,写入操作等待;
- * 线程正在写入的时候,其他线程的写入操作和读取操作都要等待;
- *
- * 以下是一个缓存类:用于演示读写锁的操作:重入、降级
- */
- public class CachedData {
- // 缓存都应该是单例的,在这里用单例模式设计:
- private static CachedData cachedData = new CachedData();
- private final ReadWriteLock lock = new ReentrantReadWriteLock();//读写锁
- private Map<String, Object> cache = new HashMap<String, Object>();//缓存
- private CachedData(){
- }
- public static CachedData getInstance(){
- return cachedData;
- }
- // 读取缓存:
- public Object read(String key) {
- lock.readLock().lock();
- Object obj = null;
- try {
- obj = cache.get(key);
- if (obj == null) {
- lock.readLock().unlock();
- // 在这里的时候,其他的线程有可能获取到锁
- lock.writeLock().lock();
- try {
- if (obj == null) {
- obj = "查找数据库"; // 实际动作是查找数据库
- // 把数据更新到缓存中:
- cache.put(key, obj);
- }
- } finally {
- // 当前线程在获取到写锁的过程中,可以获取到读锁,这叫锁的重入,然后导致了写锁的降级,称为降级锁。
- // 利用重入可以将写锁降级,但只能在当前线程保持的所有写入锁都已经释放后,才允许重入 reader使用
- // 它们。所以在重入的过程中,其他的线程不会有获取到锁的机会(这样做的好处)。试想,先释放写锁,在
- // 上读锁,这样做有什么弊端?--如果这样做,那么在释放写锁后,在得到读锁前,有可能被其他线程打断。
- // 重入————>降级锁的步骤:先获取写入锁,然后获取读取锁,最后释放写入锁(重点)
- lock.readLock().lock();
- lock.writeLock().unlock();
- }
- }
- } finally {
- lock.readLock().unlock();
- }
- return obj;
- }
- }
例子2:
- import java.util.Map;
- import java.util.TreeMap;
- import java.util.concurrent.locks.Lock;
- import java.util.concurrent.locks.ReadWriteLock;
- import java.util.concurrent.locks.ReentrantReadWriteLock;
- import javax.xml.crypto.Data;
- /**
- * @author amber2012
- *
- * jdk文档中关于ReentrantReadWriteLock类使用的一个很好的例子,以下是具体的介绍:
- *
- * 在使用某些种类的 Collection 时,可以使用 ReentrantReadWriteLock 来提高并发性。通常,在预期 collection
- * 很大,读取者线程访问它的次数多于写入者线程,并且 entail 操作的开销高于同步开销时,这很值得一试。例如,以下
- * 是一个使用 TreeMap 的类,预期它很大,并且能被同时访问。
- */
- public class RWDictionary {
- private final Map<String, Data> map = new TreeMap<String, Data>();
- private final ReadWriteLock rwl = new ReentrantReadWriteLock();
- private final Lock readLock = rwl.readLock();
- private final Lock writeLock = rwl.writeLock();
- public Data get(String key) {
- readLock.lock();
- try {
- return map.get(key);
- } finally {
- readLock.unlock();
- }
- }
- public String[] allKeys() {
- readLock.lock();
- try {
- return (String[]) map.keySet().toArray();
- } finally {
- readLock.unlock();
- }
- }
- public Data put(String key, Data value) {
- writeLock.lock();
- try {
- return map.put(key, value);
- } finally {
- writeLock.unlock();
- }
- }
- public void clear() {
- writeLock.lock();
- try {
- map.clear();
- } finally {
- writeLock.unlock();
- }
- }
- }