upstreamL

博客中的文章用于做笔记用,来源于网络,并非本人所写,如有侵权,请您联系我标明出处或删除,3Q~

导航

递归算法详解

http://blog.csdn.net/effective_coder/article/details/8742979
                                                                                递归算法详解

        C语言通过运行时堆栈来支持递归的调用,在我们刚接触递归的时候,国内很多教材都采用求阶乘和菲波那契数列来描述该思想,就如同深受大家敬爱的国产的C语言程序设计,老谭也用了阶乘来描述递归,以至于很多新手一看见阶乘就理所当然的认为是递归,坑了不少人,说实在的,描述这个思想还是可以,但是利用递归求阶乘可是没有一点好处,递归解决菲波那契数列效率更是低得惊人,这点是显而易见的!废话不多说,接下来我们进入正题!(不过说实话,我很讨厌接下来这些太理论的东西,说到底就是那么个意思,大家懂就好了,也可以当看看故事!我主要说的就是各种各样递归的实例)

 

1:递归算法的思想

 递归算法是把问题转化为规模缩小了的同类问题的子问题。然后递归调用函数(或过程)来表示问题的解。在C语言中的运行堆栈为他的存在提供了很好的支持,过程一般是通过函数或子过程来实现。

递归算法:在函数或子过程的内部,直接或者间接地调用自己的算法。

 

2:递归算法的特点

递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法解决问题的特点:
(1) 递归就是在过程或函数里调用自身。
(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
(3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
(4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。

3:递归算法的要求

递归算法所体现的“重复”一般有三个要求:
一是每次调用在规模上都有所缩小(通常是减半);
二是相邻两次重复之间有紧密的联系,前一次要为后一次做准备(通常前一次的输出就作为后一次的输入);
三是在问题的规模极小时必须用直接给出解答而不再进行递归调用,因而每次递归调用都是有条件的(以规模未达到直接解答的大小为条件),无条件递归调用将会成为死循环而不能正常结束。

4:各式各样利用递归的问题

1:首先看看那些传统的问题吧,如使用递归来解决斐波那契数列的第n个数是多少?(开始从1开始)

 

  1. #include <iostream>  
  2. using namespace std;  
  3.   
  4. int Fib(int index);  
  5. int main(int argc, char* argv[])  
  6. {  
  7.     cout<<Fib(12)<<endl;  
  8.     system("pause");  
  9.     return 0;  
  10. }  
  11.   
  12. int Fib(int index)  
  13. {  
  14.     if(index==1 || index==2)  
  15.         return index;  
  16.     else  
  17.         return Fib(index-1) + Fib(index-2);    //开始递归调用  
  18.   
  19. }  


写程序的时候我测试了一下,假如要第100个数字,那时间可不知道等了多久,调用函数达到了上千次,速度太慢,对于这种情况,我们对比一下不使用的递归的时候时间消耗,这里只需要多加一个函数即可

  1. #include <iostream>  
  2. #include <ctime>  
  3. using namespace std;  
  4.   
  5. int Fib2(int index);  
  6. int Fib1(int index);  
  7. int main(int argc, char* argv[])  
  8. {  
  9.     clock_t start,finish;  
  10.   
  11.     cout<<"不使用递归:"<<endl;  
  12.     start = clock();  
  13.     cout<<"所得结果为 "<<Fib2(40)<<endl;  
  14.     finish = clock();  
  15.     cout<<"时间消耗为 "<<finish - start<<"毫秒"<<endl;  
  16.   
  17.     cout<<endl;  
  18.     cout<<"使用递归:"<<endl;  
  19.     start = clock();  
  20.     cout<<"所得结果为 "<<Fib1(40)<<endl;  
  21.     finish = clock();  
  22.     cout<<"时间消耗为 "<<finish - start<<"毫秒"<<endl;  
  23.   
  24.     system("pause");  
  25.     return 0;  
  26. }  
  27.   
  28. int Fib1(int index)  
  29. {  
  30.     if(index==1 || index==2)  
  31.         return index;  
  32.     else  
  33.         return Fib1(index-1) + Fib1(index-2);    //开始递归调用  
  34. }  
  35.   
  36. int Fib2(int index)  
  37. {  
  38.     if(index == 1 || index ==2)  
  39.         return index;  
  40.     int *array = new int [index+1];  
  41.     array[1]=1;                //第0个元素没有使用  
  42.     array[2]=2;  
  43.     for(int i=3;i<=index;++i)  
  44.         array[i] = array[i-1] + array[i-2];  
  45.     return array[index];  
  46. }  


运行结果:

结果显而易见,差距太明显,在这里我们同时求第40个斐波那契数字比较时间消耗,所以大家可以看到递归的时间消耗是非常严重,而且效率非常低下,上面已经说了,在可以不用递归的时候尽量不用,那么递归是不是一无是处勒?答案是否定的,在很多程序设计大赛中,有很多题用一般的思路是很难解的,或者是过程繁琐,如果适当的利用递归,结果将事半功倍!!!

 

 2:递归的汉诺塔

这个程序以及说明在分治算法那一节已经说了,递归和分治通常都是结合在一起使用的,一次次的缩小范围,而且子问题和原问题具有相同的结构!  这里我直接把汉诺塔代码拷贝过来,就不多说了!

 

  1. #include <stdio.h>    
  2. #include <stdlib.h>    
  3.     
  4. static int count = -1;    
  5.     
  6. void move(char x,char y);                             // 对move函数的声明     
  7. void hanoi(int n,char one,char two,char three)       ;// 对hanoi函数的声明\    
  8.     
  9. int main()    
  10. {              
  11.     int m;    
  12.     printf("请输入一共有多少个板子需要移动:");    
  13.     scanf("%d",&m);    
  14.     printf("以下是%d个板子的移动方案:\n",m);    
  15.     hanoi(m,'A','B','C');    
  16.     system("pause");    
  17.     return 0;    
  18. }    
  19.     
  20. void hanoi(int n,char one,char two,char three)        // 定义hanoi函数      
  21. // 将n个盘从one座借助two座,移到three座     
  22. {    
  23.         
  24.     if(n==1)    
  25.         move(one,three);    
  26.     else    
  27.     {    
  28.         hanoi(n-1,one,three,two);                   //首先把n-1个从one移动到two    
  29.         move(one,three);                            //然后把最后一个n从one移动到three    
  30.         hanoi(n-1,two,one,three);                   //最后再把n-1个从two移动到three    
  31.     }    
  32. }    
  33.     
  34.     
  35. void move(char x,char y)                           //  定义move函数     
  36. {    
  37.     count++;    
  38.     if( !(count%5) )    
  39.         printf("\n");    
  40.     printf("%c移动至%c  ",x,y);    
  41. }    


3:兔子繁殖问题(递归实现)

 

一对小兔子一年后长成大兔子,一对大兔子每半年生一对小兔子,大兔子的繁殖期为4年,兔子的寿命为6年,假定第一年年初投放了一对小兔子,请编程实现,第N年年末总共有多少只兔子,N由键盘输入!

解析,这个题目比较好懂,也就是一对小兔子前一年长大,然后每半年产一对小兔子,持续4年,然后最后一年不生殖了,再过一年死亡,题目看似简单,其实要想递归起来可不是那么容易的,大家可以想一下!

代码如下:
 

 

4:整数的划分问题

将一个整数分解为若干个整数之和的形式,比如 n = n1+n2+n3+n4··········!不同划分的个数称为N的划分数。

例如对于6而言:

6;

5+1;

4+2,4+1+1;

3+3;3+2+1;3+1+1+1;

2+2+2;2+2+1+1;2+1+1+1+1;

1+1+1+1+1+1     一共有6种!

 

1、 q(n,1) = 1 ,n>=1 ;
当最大加数不大于1时,任何正整数n只有一种表示方式:n = 1+1+……+1 。n个1的和。
2、q( n,m ) = q( n,n ),n<=m;  最大加数不能大于n。
3、 q( n,n ) = 1 +  q( n , n-1 );   正整数的划分由n1=n和n1<=n的划分组成。
4、q( n,m ) = q( n,m-1 )+q( n-m,m ), n>m>1;正整数n的最大加数不大于m的划分由 n1=m的划分和n1<m的划分组成。

现在可以依据这个递推原理写出程序:

 

  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. int intPart( int n , int m ) ;  
  4. int main()  
  5. {  
  6.     int num ;  
  7.     int partNum = 0 ;  
  8.     printf("Please input an integer:/n") ;  
  9.     scanf("%d",&num) ;  
  10.     partNum = intPart(num,num);  
  11.     printf("%d/n",partNum) ;  
  12.     system("pause");  
  13.     return 0;  
  14. }  
  15. int intPart( int n , int m )  
  16. {  
  17.     if( ( n < 1 ) ||( m < 1 ) ) return 0 ;  
  18.     if( ( n == 1 )||( m == 1 ) ) return 1 ;  
  19.     if( n < m ) return intPart( n , n ) ;  
  20.     if( n == m ) return intPart( n , m-1 ) + 1 ;  
  21.     return intPart( n , m-1 ) + intPart( n - m , m ) ;  
  22. }  

运行结果可以看到一共有11种情况

 

5 整数的全排列问题:

全排列的递归实现也就是不停的交换两个数的位置,题目描述这里就省了,直接上代码!

 

  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3. #include <string.h>  
  4. void swap(char *a,char *b)  
  5. {  
  6.     char temp = *a;  
  7.     *a = *b;  
  8.     *b = temp;  
  9. }  
  10. //k表示循环到第几个字符,m表示该次循环的总长度  
  11. void arrange(char *pizstr,int k,int m)  
  12. {  
  13.     if(k == m)  
  14.     {  
  15.         static int m_count = 1;  
  16.         printf("the %d time:%s\n",m_count++,pizstr);  
  17.     }  
  18.     else  
  19.     {  
  20.         for(int i=k;i<=m;i++)                          //主要递归球全排列的代码  
  21.         {  
  22.             swap(pizstr+k,pizstr+i);  
  23.             arrange(pizstr,k+1,m);  
  24.             swap(pizstr+k,pizstr+i);  
  25.         }  
  26.     }  
  27. }  
  28. void foo(char *p_str)  
  29. {  
  30.     arrange(p_str,0,strlen(p_str)-1);  
  31. }  
  32. int main()  
  33. {  
  34.     char pstr[] = "12345";  
  35.     printf("%s\n",pstr);  
  36.     foo(pstr);  
  37.     system("pause");  
  38.     return 0;  
  39. }  


时间紧促,有时间再继续举例!持续更新

posted on 2016-12-04 17:07  upstreamL  阅读(3227)  评论(0编辑  收藏  举报