(Dinic) hdu 3549
Flow Problem
Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 8864 Accepted Submission(s): 4170
Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
Output
For each test cases, you should output the maximum flow from source 1 to sink N.
Sample Input
2
3 2
1 2 1
2 3 1
3 3
1 2 1
2 3 1
1 3 1
Sample Output
Case 1: 1
Case 2: 2
Author
HyperHexagon
Source
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<cstdlib> #include<algorithm> #include<queue> using namespace std; #define INF 0x7fffffff queue<int> q; int tab[250][250],dist[250]; int n,m,ans,tt; int bfs() { int x; memset(dist,-1,sizeof(dist)); dist[1]=0; q.push(1); while(!q.empty()) { x=q.front(),q.pop(); for(int i=1;i<=n;i++) { if(tab[x][i]>0&&dist[i]<0) { dist[i]=dist[x]+1; q.push(i); } } } if(dist[n]>0) return 1; else return 0; } int find(int x,int low) { int a=0; if(x==n) return low; for(int i=1;i<=n;i++) { if(tab[x][i]>0&&dist[i]==dist[x]+1&&(a=find(i,min(low,tab[x][i])))) { tab[x][i]-=a; tab[i][x]+=a; return a; } } return 0; } int main() { int f,t,flow,tans; scanf("%d",&tt); while(tt--) { scanf("%d%d",&n,&m); for(int i=1;i<=m;i++) { scanf("%d%d%d",&f,&t,&flow); tab[f][t]+=flow; } ans=0; while(bfs()) { if(tans=find(1,INF)) ans+=tans; } printf("%d\n",ans); } return 0; }