RocketMQ中Broker的HA策略源码分析

Broker的HA策略分为两部分
①同步元数据
②同步消息数据

 

同步元数据

在Slave启动时,会启动一个定时任务用来从master同步元数据

 1 if (role == BrokerRole.SLAVE) {
 2     if (null != slaveSyncFuture) {
 3         slaveSyncFuture.cancel(false);
 4     }
 5     this.slaveSynchronize.setMasterAddr(null);
 6     slaveSyncFuture = this.scheduledExecutorService.scheduleAtFixedRate(new Runnable() {
 7         @Override
 8         public void run() {
 9             try {
10                 BrokerController.this.slaveSynchronize.syncAll();
11             }
12             catch (Throwable e) {
13                 log.error("ScheduledTask SlaveSynchronize syncAll error.", e);
14             }
15         }
16     }, 1000 * 3, 1000 * 10, TimeUnit.MILLISECONDS);
17 } 

这里设置了定时任务,执行slaveSynchronize的syncAll方法
可以注意在之前会通过setMasterAddr将Master的地址设为null,这是由于在后面会通过另一个定时任务registerBrokerAll来向NameServer获取Master的地址,详见:

【RocketMQ中Broker的启动源码分析(二)】

 


SlaveSynchronize的syncAll方法:

1 public void syncAll() {
2     this.syncTopicConfig();
3     this.syncConsumerOffset();
4     this.syncDelayOffset();
5     this.syncSubscriptionGroupConfig();
6 }

这个方法会依次调用四个方法,来同步相应信息:
syncTopicConfig:同步topic的配置信息
syncConsumerOffset:同步Consumer的Offset信息
syncDelayOffset:同步延迟队列信息
syncSubscriptionGroupConfig:同步订阅信息


由于这几个方法的实现是类似的,这里就只看下syncTopicConfig的实现:
syncTopicConfig方法:

 1 private void syncTopicConfig() {
 2     String masterAddrBak = this.masterAddr;
 3     if (masterAddrBak != null && !masterAddrBak.equals(brokerController.getBrokerAddr())) {
 4         try {
 5             TopicConfigSerializeWrapper topicWrapper =
 6                 this.brokerController.getBrokerOuterAPI().getAllTopicConfig(masterAddrBak);
 7             if (!this.brokerController.getTopicConfigManager().getDataVersion()
 8                 .equals(topicWrapper.getDataVersion())) {
 9 
10                 this.brokerController.getTopicConfigManager().getDataVersion()
11                     .assignNewOne(topicWrapper.getDataVersion());
12                 this.brokerController.getTopicConfigManager().getTopicConfigTable().clear();
13                 this.brokerController.getTopicConfigManager().getTopicConfigTable()
14                     .putAll(topicWrapper.getTopicConfigTable());
15                 this.brokerController.getTopicConfigManager().persist();
16 
17                 log.info("Update slave topic config from master, {}", masterAddrBak);
18             }
19         } catch (Exception e) {
20             log.error("SyncTopicConfig Exception, {}", masterAddrBak, e);
21         }
22     }
23 }

这里首先获取master的地址masterAddr,由于registerBrokerAll定时任务的存在,即便这一次没有获取到masterAddr,只要节点中有master,总会在后面定时执行时从NameServer中获取到


当获取到master地址后,通过BrokerOuterAPI的getAllTopicConfig方法,向master请求
BrokerOuterAPI的getAllTopicConfig方法:

 1 public TopicConfigSerializeWrapper getAllTopicConfig(
 2     final String addr) throws RemotingConnectException, RemotingSendRequestException,
 3     RemotingTimeoutException, InterruptedException, MQBrokerException {
 4     RemotingCommand request = RemotingCommand.createRequestCommand(RequestCode.GET_ALL_TOPIC_CONFIG, null);
 5 
 6     RemotingCommand response = this.remotingClient.invokeSync(MixAll.brokerVIPChannel(true, addr), request, 3000);
 7     assert response != null;
 8     switch (response.getCode()) {
 9         case ResponseCode.SUCCESS: {
10             return TopicConfigSerializeWrapper.decode(response.getBody(), TopicConfigSerializeWrapper.class);
11         }
12         default:
13             break;
14     }
15 
16     throw new MQBrokerException(response.getCode(), response.getRemark());
17 }

首先构建GET_ALL_TOPIC_CONFIG求情指令,然后通过remotingClient的invokeSync进行同步发送,注意这里会通过MixAll的brokerVIPChannel方法,得到对应的master地址的VIP通道地址,就是端口号减2,这在我之前的博客中介绍过
有关同步发送在  【RocketMQ中Producer消息的发送源码分析】 中详细介绍过

 

请求发送给master后,来看看master是怎么处理的
master端在收到请求后会通过AdminBrokerProcessor的processRequest方法判别请求指令:

1 case RequestCode.GET_ALL_TOPIC_CONFIG:
2     return this.getAllTopicConfig(ctx, request);

执行getAllTopicConfig方法:

 1 private RemotingCommand getAllTopicConfig(ChannelHandlerContext ctx, RemotingCommand request) {
 2     final RemotingCommand response = RemotingCommand.createResponseCommand(GetAllTopicConfigResponseHeader.class);
 3     // final GetAllTopicConfigResponseHeader responseHeader =
 4     // (GetAllTopicConfigResponseHeader) response.readCustomHeader();
 5 
 6     String content = this.brokerController.getTopicConfigManager().encode();
 7     if (content != null && content.length() > 0) {
 8         try {
 9             response.setBody(content.getBytes(MixAll.DEFAULT_CHARSET));
10         } catch (UnsupportedEncodingException e) {
11             log.error("", e);
12 
13             response.setCode(ResponseCode.SYSTEM_ERROR);
14             response.setRemark("UnsupportedEncodingException " + e);
15             return response;
16         }
17     } else {
18         log.error("No topic in this broker, client: {}", ctx.channel().remoteAddress());
19         response.setCode(ResponseCode.SYSTEM_ERROR);
20         response.setRemark("No topic in this broker");
21         return response;
22     }
23 
24     response.setCode(ResponseCode.SUCCESS);
25     response.setRemark(null);
26 
27     return response;
28 }

这里会将TopicConfigManager中保存的topicConfigTable:

1 private final ConcurrentMap<String, TopicConfig> topicConfigTable =
2         new ConcurrentHashMap<String, TopicConfig>(1024);

将这个map通过encode方法转换成json字符串,再通过Netty发送给slave


回到slave中,在同步发送的情况下,会等待会送响应,收到响应后:

1 switch (response.getCode()) {
2     case ResponseCode.SUCCESS: {
3         return TopicConfigSerializeWrapper.decode(response.getBody(), TopicConfigSerializeWrapper.class);
4     }
5     default:
6         break;
7 }

通过decode解码,将json字符串转换为map封装在 TopicConfigSerializeWrapper中


回到syncTopicConfig方法中:
得到TopicConfigSerializeWrapper实例后

 1 if (!this.brokerController.getTopicConfigManager().getDataVersion()
 2     .equals(topicWrapper.getDataVersion())) {
 3 
 4     this.brokerController.getTopicConfigManager().getDataVersion()
 5         .assignNewOne(topicWrapper.getDataVersion());
 6     this.brokerController.getTopicConfigManager().getTopicConfigTable().clear();
 7     this.brokerController.getTopicConfigManager().getTopicConfigTable()
 8         .putAll(topicWrapper.getTopicConfigTable());
 9     this.brokerController.getTopicConfigManager().persist();
10 
11     log.info("Update slave topic config from master, {}", masterAddrBak);
12 }

判断版本是否一致,若不一致,会进行替换,这样slave的Topic配置信息就和master保持同步了

其他三种信息的同步同理

 

 同步消息数据

在master启动时,会通过JDK的NIO方式启动一个HA服务线程,用以处理slave的连接:

 1 public void run() {
 2     log.info(this.getServiceName() + " service started");
 3 
 4     while (!this.isStopped()) {
 5         try {
 6             this.selector.select(1000);
 7             Set<SelectionKey> selected = this.selector.selectedKeys();
 8 
 9             if (selected != null) {
10                 for (SelectionKey k : selected) {
11                     if ((k.readyOps() & SelectionKey.OP_ACCEPT) != 0) {
12                         SocketChannel sc = ((ServerSocketChannel) k.channel()).accept();
13 
14                         if (sc != null) {
15                             HAService.log.info("HAService receive new connection, "
16                                 + sc.socket().getRemoteSocketAddress());
17 
18                             try {
19                                 HAConnection conn = new HAConnection(HAService.this, sc);
20                                 conn.start();
21                                 HAService.this.addConnection(conn);
22                             } catch (Exception e) {
23                                 log.error("new HAConnection exception", e);
24                                 sc.close();
25                             }
26                         }
27                     } else {
28                         log.warn("Unexpected ops in select " + k.readyOps());
29                     }
30                 }
31 
32                 selected.clear();
33             }
34         } catch (Exception e) {
35             log.error(this.getServiceName() + " service has exception.", e);
36         }
37     }
38 
39     log.info(this.getServiceName() + " service end");
40 }

这里就是非常典型的JDK NIO的使用,在侦听到连接取得SocketChannel后,将其封装为HAConnection

 1 public HAConnection(final HAService haService, final SocketChannel socketChannel) throws IOException {
 2     this.haService = haService;
 3     this.socketChannel = socketChannel;
 4     this.clientAddr = this.socketChannel.socket().getRemoteSocketAddress().toString();
 5     this.socketChannel.configureBlocking(false);
 6     this.socketChannel.socket().setSoLinger(false, -1);
 7     this.socketChannel.socket().setTcpNoDelay(true);
 8     this.socketChannel.socket().setReceiveBufferSize(1024 * 64);
 9     this.socketChannel.socket().setSendBufferSize(1024 * 64);
10     this.writeSocketService = new WriteSocketService(this.socketChannel);
11     this.readSocketService = new ReadSocketService(this.socketChannel);
12     this.haService.getConnectionCount().incrementAndGet();
13 }

在构造方法内进行了对socketChannel的一些配置,还创建了一个WriteSocketService和一个ReadSocketService,这两个是后续处理消息同步的基础


在创建完HAConnection后,调用其start方法:

1 public void start() {
2     this.readSocketService.start();
3     this.writeSocketService.start();
4 }

这里会启动两个线程,分别处理读取slave发送的数据,以及向slave发送数据

 


到这里,先不急着分析master了,来看看slave端
slave在启动时,会启动HAClient的线程:

 1 public void run() {
 2     log.info(this.getServiceName() + " service started");
 3 
 4     while (!this.isStopped()) {
 5         try {
 6             if (this.connectMaster()) {
 7 
 8                 if (this.isTimeToReportOffset()) {
 9                     boolean result = this.reportSlaveMaxOffset(this.currentReportedOffset);
10                     if (!result) {
11                         this.closeMaster();
12                     }
13                 }
14 
15                 this.selector.select(1000);
16 
17                 boolean ok = this.processReadEvent();
18                 if (!ok) {
19                     this.closeMaster();
20                 }
21 
22                 if (!reportSlaveMaxOffsetPlus()) {
23                     continue;
24                 }
25 
26                 long interval =
27                     HAService.this.getDefaultMessageStore().getSystemClock().now()
28                         - this.lastWriteTimestamp;
29                 if (interval > HAService.this.getDefaultMessageStore().getMessageStoreConfig()
30                     .getHaHousekeepingInterval()) {
31                     log.warn("HAClient, housekeeping, found this connection[" + this.masterAddress
32                         + "] expired, " + interval);
33                     this.closeMaster();
34                     log.warn("HAClient, master not response some time, so close connection");
35                 }
36             } else {
37                 this.waitForRunning(1000 * 5);
38             }
39         } catch (Exception e) {
40             log.warn(this.getServiceName() + " service has exception. ", e);
41             this.waitForRunning(1000 * 5);
42         }
43     }
44 
45     log.info(this.getServiceName() + " service end");
46 }

在这个while循环中,首先通过connectMaster检查是否和master连接了


connectMaster方法:

 1 private boolean connectMaster() throws ClosedChannelException {
 2     if (null == socketChannel) {
 3         String addr = this.masterAddress.get();
 4         if (addr != null) {
 5 
 6             SocketAddress socketAddress = RemotingUtil.string2SocketAddress(addr);
 7             if (socketAddress != null) {
 8                 this.socketChannel = RemotingUtil.connect(socketAddress);
 9                 if (this.socketChannel != null) {
10                     this.socketChannel.register(this.selector, SelectionKey.OP_READ);
11                 }
12             }
13         }
14 
15         this.currentReportedOffset = HAService.this.defaultMessageStore.getMaxPhyOffset();
16 
17         this.lastWriteTimestamp = System.currentTimeMillis();
18     }
19 
20     return this.socketChannel != null;
21 }

若是socketChannel为null,意味着并没有产生连接,或者连接断开
需要重新根据masterAddress建立网络连接

只要是需要建立连接,都需要通过defaultMessageStore的getMaxPhyOffset方法,获取本地最大的Offset,由currentReportedOffset保存,后续用于向master报告;以及保存了一个时间戳lastWriteTimestamp,用于之后的校对


当确保与master的连接建立成功后,通过isTimeToReportOffset方法,检查是否需要向master报告当前的最大Offset

isTimeToReportOffset方法:

1 private boolean isTimeToReportOffset() {
2     long interval =
3         HAService.this.defaultMessageStore.getSystemClock().now() - this.lastWriteTimestamp;
4     boolean needHeart = interval > HAService.this.defaultMessageStore.getMessageStoreConfig()
5         .getHaSendHeartbeatInterval();
6 
7     return needHeart;
8 }

这里就通过lastWriteTimestamp和当前时间检查,判断是否达到了报告时间间隔HaSendHeartbeatInterval,默认5s


若是达到了,就需要通过reportSlaveMaxOffset方法,将记录的currentReportedOffset这个最大的offset发送给master


reportSlaveMaxOffset方法:

 1 private boolean reportSlaveMaxOffset(final long maxOffset) {
 2     this.reportOffset.position(0);
 3     this.reportOffset.limit(8);
 4     this.reportOffset.putLong(maxOffset);
 5     this.reportOffset.position(0);
 6     this.reportOffset.limit(8);
 7 
 8     for (int i = 0; i < 3 && this.reportOffset.hasRemaining(); i++) {
 9         try {
10             this.socketChannel.write(this.reportOffset);
11         } catch (IOException e) {
12             log.error(this.getServiceName()
13                 + "reportSlaveMaxOffset this.socketChannel.write exception", e);
14             return false;
15         }
16     }
17 
18     return !this.reportOffset.hasRemaining();
19 }

其中reportOffset是专门用来缓存offset的ByteBuffer

1 private final ByteBuffer reportOffset = ByteBuffer.allocate(8);

将maxOffset存放在reportOffset中,然后通过socketChannel的write方法,完成向master的发送

其中hasRemaining方法用来检查当前位置是否已经达到缓冲区极限limit,确保reportOffset 中的内容能被完全发送出去

发送成功后,会调用selector的select方法,在超时时间内进行NIO的轮询,等待master的回送


通过这我们可以看出slave在和master建立连接后,会定时向master报告自己当前的offset

 


来看看master收到offset后是如何处理的:

在master端会通过前面提到的ReadSocketService线程进行处理:

 1 public void run() {
 2     HAConnection.log.info(this.getServiceName() + " service started");
 3 
 4     while (!this.isStopped()) {
 5         try {
 6             this.selector.select(1000);
 7             boolean ok = this.processReadEvent();
 8             if (!ok) {
 9                 HAConnection.log.error("processReadEvent error");
10                 break;
11             }
12 
13             long interval = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now() - this.lastReadTimestamp;
14             if (interval > HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig().getHaHousekeepingInterval()) {
15                 log.warn("ha housekeeping, found this connection[" + HAConnection.this.clientAddr + "] expired, " + interval);
16                 break;
17             }
18         } catch (Exception e) {
19             HAConnection.log.error(this.getServiceName() + " service has exception.", e);
20             break;
21         }
22     }
23 
24     this.makeStop();
25 
26     writeSocketService.makeStop();
27 
28     haService.removeConnection(HAConnection.this);
29 
30     HAConnection.this.haService.getConnectionCount().decrementAndGet();
31 
32     SelectionKey sk = this.socketChannel.keyFor(this.selector);
33     if (sk != null) {
34         sk.cancel();
35     }
36 
37     try {
38         this.selector.close();
39         this.socketChannel.close();
40     } catch (IOException e) {
41         HAConnection.log.error("", e);
42     }
43 
44     HAConnection.log.info(this.getServiceName() + " service end");
45 }

这里的while循环中首先也是通过selector的select方法,在超时时间内进行NIO的轮询

轮询结束后的进一步的处理由processReadEvent来完成:

 1 private boolean processReadEvent() {
 2         int readSizeZeroTimes = 0;
 3 
 4         if (!this.byteBufferRead.hasRemaining()) {
 5             this.byteBufferRead.flip();
 6             this.processPostion = 0;
 7         }
 8 
 9         while (this.byteBufferRead.hasRemaining()) {
10             try {
11                 int readSize = this.socketChannel.read(this.byteBufferRead);
12                 if (readSize > 0) {
13                     readSizeZeroTimes = 0;
14                     this.lastReadTimestamp = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now();
15                     if ((this.byteBufferRead.position() - this.processPostion) >= 8) {
16                         int pos = this.byteBufferRead.position() - (this.byteBufferRead.position() % 8);
17                         long readOffset = this.byteBufferRead.getLong(pos - 8);
18                         this.processPostion = pos;
19 
20                         HAConnection.this.slaveAckOffset = readOffset;
21                         if (HAConnection.this.slaveRequestOffset < 0) {
22                             HAConnection.this.slaveRequestOffset = readOffset;
23                             log.info("slave[" + HAConnection.this.clientAddr + "] request offset " + readOffset);
24                         }
25 
26                         HAConnection.this.haService.notifyTransferSome(HAConnection.this.slaveAckOffset);
27                     }
28                 } else if (readSize == 0) {
29                     if (++readSizeZeroTimes >= 3) {
30                         break;
31                     }
32                 } else {
33                     log.error("read socket[" + HAConnection.this.clientAddr + "] < 0");
34                     return false;
35                 }
36             } catch (IOException e) {
37                 log.error("processReadEvent exception", e);
38                 return false;
39             }
40         }
41 
42         return true;
43     }
44 }

这个方法其实就是通过socketChannel的read方法,将slave发送过来的数据存入byteBufferRead中
在确保发送过来的数据能达到8字节时,取出long类型的offset值,然后交给HAConnection的slaveAckOffset成员进行保存

其中slaveRequestOffset是用来处理第一次连接时的同步

notifyTransferSome方法是作为同步master时,进行相应的唤醒操作,异步master则没有要求,在后面具体分析


也就是说ReadSocketService这个线程,只是不断地读取并更新slave发送来的offset数据

 

再来看看WriteSocketService线程是如何进行向slave的发送:

  1 public void run() {
  2     HAConnection.log.info(this.getServiceName() + " service started");
  3 
  4     while (!this.isStopped()) {
  5         try {
  6             this.selector.select(1000);
  7 
  8             if (-1 == HAConnection.this.slaveRequestOffset) {
  9                 Thread.sleep(10);
 10                 continue;
 11             }
 12 
 13             if (-1 == this.nextTransferFromWhere) {
 14                 if (0 == HAConnection.this.slaveRequestOffset) {
 15                     long masterOffset = HAConnection.this.haService.getDefaultMessageStore().getCommitLog().getMaxOffset();
 16                     masterOffset =
 17                         masterOffset
 18                             - (masterOffset % HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig()
 19                             .getMapedFileSizeCommitLog());
 20 
 21                     if (masterOffset < 0) {
 22                         masterOffset = 0;
 23                     }
 24 
 25                     this.nextTransferFromWhere = masterOffset;
 26                 } else {
 27                     this.nextTransferFromWhere = HAConnection.this.slaveRequestOffset;
 28                 }
 29 
 30                 log.info("master transfer data from " + this.nextTransferFromWhere + " to slave[" + HAConnection.this.clientAddr
 31                     + "], and slave request " + HAConnection.this.slaveRequestOffset);
 32             }
 33 
 34             if (this.lastWriteOver) {
 35 
 36                 long interval =
 37                     HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now() - this.lastWriteTimestamp;
 38 
 39                 if (interval > HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig()
 40                     .getHaSendHeartbeatInterval()) {
 41 
 42                     // Build Header
 43                     this.byteBufferHeader.position(0);
 44                     this.byteBufferHeader.limit(headerSize);
 45                     this.byteBufferHeader.putLong(this.nextTransferFromWhere);
 46                     this.byteBufferHeader.putInt(0);
 47                     this.byteBufferHeader.flip();
 48 
 49                     this.lastWriteOver = this.transferData();
 50                     if (!this.lastWriteOver)
 51                         continue;
 52                 }
 53             } else {
 54                 this.lastWriteOver = this.transferData();
 55                 if (!this.lastWriteOver)
 56                     continue;
 57             }
 58 
 59             SelectMappedBufferResult selectResult =
 60                 HAConnection.this.haService.getDefaultMessageStore().getCommitLogData(this.nextTransferFromWhere);
 61             if (selectResult != null) {
 62                 int size = selectResult.getSize();
 63                 if (size > HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig().getHaTransferBatchSize()) {
 64                     size = HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig().getHaTransferBatchSize();
 65                 }
 66 
 67                 long thisOffset = this.nextTransferFromWhere;
 68                 this.nextTransferFromWhere += size;
 69 
 70                 selectResult.getByteBuffer().limit(size);
 71                 this.selectMappedBufferResult = selectResult;
 72 
 73                 // Build Header
 74                 this.byteBufferHeader.position(0);
 75                 this.byteBufferHeader.limit(headerSize);
 76                 this.byteBufferHeader.putLong(thisOffset);
 77                 this.byteBufferHeader.putInt(size);
 78                 this.byteBufferHeader.flip();
 79 
 80                 this.lastWriteOver = this.transferData();
 81             } else {
 82 
 83                 HAConnection.this.haService.getWaitNotifyObject().allWaitForRunning(100);
 84             }
 85         } catch (Exception e) {
 86 
 87             HAConnection.log.error(this.getServiceName() + " service has exception.", e);
 88             break;
 89         }
 90     }
 91 
 92     HAConnection.this.haService.getWaitNotifyObject().removeFromWaitingThreadTable();
 93 
 94     if (this.selectMappedBufferResult != null) {
 95         this.selectMappedBufferResult.release();
 96     }
 97 
 98     this.makeStop();
 99 
100     readSocketService.makeStop();
101 
102     haService.removeConnection(HAConnection.this);
103 
104     SelectionKey sk = this.socketChannel.keyFor(this.selector);
105     if (sk != null) {
106         sk.cancel();
107     }
108 
109     try {
110         this.selector.close();
111         this.socketChannel.close();
112     } catch (IOException e) {
113         HAConnection.log.error("", e);
114     }
115 
116     HAConnection.log.info(this.getServiceName() + " service end");
117 }

这里一开始会对slaveRequestOffset进行一次判断,当且仅当slaveRequestOffset初始化的时候是才是-1

也就是说当slave还没有发送过来offset时,WriteSocketService线程只会干等

当slave发送来offset后
首先对nextTransferFromWhere进行了判断,nextTransferFromWhere和slaveRequestOffset一样,在初始化的时候为-1
也就代表着master和slave刚刚建立连接,并没有进行过一次消息的同步!

此时会对修改了的slaveRequestOffset进行判断
若是等于0,说明slave没有任何消息的历史记录,那么此时master会取得自身的MaxOffset,根据这个MaxOffset,通过:

1 masterOffset =  masterOffset
2                 - (masterOffset % HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig()
3                 .getMapedFileSizeCommitLog() /* 1G */);

计算出最后一个文件开始的offset
也就是说,当slave没有消息的历史记录,master只会从本地最后一个CommitLog文件开始的地方,将消息数据发送给slave


若是slave有数据,就从slave发送来的offset的位置起,进行发送,通过nextTransferFromWhere记录这个offset值


接着对lastWriteOver进行了判断,lastWriteOver是一个状态量,用来表示上次发送是否传输完毕,初始化是true


若是true,这里会进行一次时间检查,lastWriteTimestamp记录最后一次发送的时间
一次来判断是否超过了时间间隔haSendHeartbeatInterval(默认5s)
也就是说至少有5s,master没有向slave发送任何消息
那么此时就会发送一个心跳包

其中byteBufferHeader是一个12字节的ByteBuffer:

1 private final int headerSize = 8 + 4;
2 private final ByteBuffer byteBufferHeader = ByteBuffer.allocate(headerSize);

这里就简单地构造了一个心跳包,后续通过transferData方法来完成数据的发送


若是 lastWriteOver为false,则表示上次数据没有发送完,就需要通过transferData方法,将剩余数据继续发送,只要没发送完,只会重复循环,直到发完


先继续往下看,下面就是发送具体的消息数据了:
首先根据nextTransferFromWhere,也就是刚才保存的offset,通过DefaultMessageStore的getCommitLogData方法,其实际上调用的是CommitLog的getData方法,这个方法在

【RocketMQ中Broker的启动源码分析(二)】中关于消息调度(ReputMessageService)时详细介绍过


根据offset找到对应的CommitLog文件,将其从offset对应起始处所有数据读入ByteBuffer中,由SelectMappedBufferResult封装


这里若是master已将将所有本地数据同步给了slave,那么得到的SelectMappedBufferResult就会为null,会调用:

1 HAConnection.this.haService.getWaitNotifyObject().allWaitForRunning(100);

将自身阻塞,超时等待100ms,要么一直等到超时时间到了,要么就会在后面所讲的同步双传中被同步master唤醒

 

在得到SelectMappedBufferResult后,这里会对读取到的数据大小进行一次判断,若是大于haTransferBatchSize(默认32K),将size改为32K,实际上就是对发送数据大小的限制,大于32K会切割,每次最多只允许发送32k


通过thisOffset记录nextTransferFromWhere即offset
更新nextTransferFromWhere值,以便下一次定位
还会将读取到的数据结果selectResult交给selectMappedBufferResult保存

然后构建消息头,这里就和心跳包格式一样,前八字节存放offset,后四字节存放数据大小


最后调用transferData方法,进行发送:

 1 private boolean transferData() throws Exception {
 2     int writeSizeZeroTimes = 0;
 3     // Write Header
 4     while (this.byteBufferHeader.hasRemaining()) {
 5         int writeSize = this.socketChannel.write(this.byteBufferHeader);
 6         if (writeSize > 0) {
 7             writeSizeZeroTimes = 0;
 8             this.lastWriteTimestamp = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now();
 9         } else if (writeSize == 0) {
10             if (++writeSizeZeroTimes >= 3) {
11                 break;
12             }
13         } else {
14             throw new Exception("ha master write header error < 0");
15         }
16     }
17 
18     if (null == this.selectMappedBufferResult) {
19         return !this.byteBufferHeader.hasRemaining();
20     }
21 
22     writeSizeZeroTimes = 0;
23 
24     // Write Body
25     if (!this.byteBufferHeader.hasRemaining()) {
26         while (this.selectMappedBufferResult.getByteBuffer().hasRemaining()) {
27             int writeSize = this.socketChannel.write(this.selectMappedBufferResult.getByteBuffer());
28             if (writeSize > 0) {
29                 writeSizeZeroTimes = 0;
30                 this.lastWriteTimestamp = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now();
31             } else if (writeSize == 0) {
32                 if (++writeSizeZeroTimes >= 3) {
33                     break;
34                 }
35             } else {
36                 throw new Exception("ha master write body error < 0");
37             }
38         }
39     }
40 
41     boolean result = !this.byteBufferHeader.hasRemaining() && !this.selectMappedBufferResult.getByteBuffer().hasRemaining();
42 
43     if (!this.selectMappedBufferResult.getByteBuffer().hasRemaining()) {
44         this.selectMappedBufferResult.release();
45         this.selectMappedBufferResult = null;
46     }
47 
48     return result;
49 }

首先将byteBufferHeader中的12字节消息头通过socketChannel的write方法发送出去
然后将selectMappedBufferResult中的ByteBuffer的消息数据发送出去

若是selectMappedBufferResult等于null,说明是心跳包,只发送消息头
无论发送什么都会将时间记录在lastWriteTimestamp中,以便后续发送心跳包的判断


看到这里其实就会发现WriteSocketService线程开启后,只要slave向master发出了第一个offset后,WriteSocketService线程都会不断地将对应位置自己本地的CommitLog文件中的内容发送给slave,直到完全同步后,WriteSocketService线程才会稍微缓缓,进入阻塞100ms以及每隔五秒发一次心跳包的状态

但是只要当Producer向master发送来消息后,由刷盘线程完成持久化后,WriteSocketService线程又会忙碌起来,此时也才是体现同步双写异步复制的时候

先不急着说这个,来看看slave接收到消息是如何处理的:


是在HAClient的线程中的processReadEvent方法处理的:

 1 private boolean processReadEvent() {
 2     int readSizeZeroTimes = 0;
 3     while (this.byteBufferRead.hasRemaining()) {
 4         try {
 5             int readSize = this.socketChannel.read(this.byteBufferRead);
 6             if (readSize > 0) {
 7                 lastWriteTimestamp = HAService.this.defaultMessageStore.getSystemClock().now();
 8                 readSizeZeroTimes = 0;
 9                 boolean result = this.dispatchReadRequest();
10                 if (!result) {
11                     log.error("HAClient, dispatchReadRequest error");
12                     return false;
13                 }
14             } else if (readSize == 0) {
15                 if (++readSizeZeroTimes >= 3) {
16                     break;
17                 }
18             } else {
19                 log.info("HAClient, processReadEvent read socket < 0");
20                 return false;
21             }
22         } catch (IOException e) {
23             log.info("HAClient, processReadEvent read socket exception", e);
24             return false;
25         }
26     }
27 
28     return true;
29 }

在socketChannel通过read方法将master发送的数据读取到byteBufferRead缓冲区后,由dispatchReadRequest方法做进一步处理


dispatchReadRequest方法:

 1 private boolean dispatchReadRequest() {
 2     final int msgHeaderSize = 8 + 4; // phyoffset + size
 3     int readSocketPos = this.byteBufferRead.position();
 4 
 5     while (true) {
 6         int diff = this.byteBufferRead.position() - this.dispatchPostion;
 7         if (diff >= msgHeaderSize) {
 8             long masterPhyOffset = this.byteBufferRead.getLong(this.dispatchPostion);
 9             int bodySize = this.byteBufferRead.getInt(this.dispatchPostion + 8);
10 
11             long slavePhyOffset = HAService.this.defaultMessageStore.getMaxPhyOffset();
12 
13             if (slavePhyOffset != 0) {
14                 if (slavePhyOffset != masterPhyOffset) {
15                     log.error("master pushed offset not equal the max phy offset in slave, SLAVE: "
16                         + slavePhyOffset + " MASTER: " + masterPhyOffset);
17                     return false;
18                 }
19             }
20 
21             if (diff >= (msgHeaderSize + bodySize)) {
22                 byte[] bodyData = new byte[bodySize];
23                 this.byteBufferRead.position(this.dispatchPostion + msgHeaderSize);
24                 this.byteBufferRead.get(bodyData);
25 
26                 HAService.this.defaultMessageStore.appendToCommitLog(masterPhyOffset, bodyData);
27 
28                 this.byteBufferRead.position(readSocketPos);
29                 this.dispatchPostion += msgHeaderSize + bodySize;
30 
31                 if (!reportSlaveMaxOffsetPlus()) {
32                     return false;
33                 }
34 
35                 continue;
36             }
37         }
38 
39         if (!this.byteBufferRead.hasRemaining()) {
40             this.reallocateByteBuffer();
41         }
42 
43         break;
44     }
45 
46     return true;
47 }

这里就首先将12字节的消息头取出来
masterPhyOffset:8字节offset ,bodySize :4字节消息大小
根据master发来的masterPhyOffset会和自己本地的slavePhyOffset进行校验,以便安全备份


之后就会将byteBufferRead中存放在消息头后面的消息数据取出来,调用appendToCommitLog方法持久化到的CommitLog中

 1 public boolean appendToCommitLog(long startOffset, byte[] data) {
 2     if (this.shutdown) {
 3         log.warn("message store has shutdown, so appendToPhyQueue is forbidden");
 4         return false;
 5     }
 6 
 7     boolean result = this.commitLog.appendData(startOffset, data);
 8     if (result) {
 9         this.reputMessageService.wakeup();
10     } else {
11         log.error("appendToPhyQueue failed " + startOffset + " " + data.length);
12     }
13 
14     return result;
15 }

实际上调用了commitLog的appendData方法将其写入磁盘,这个方法我在前面博客中介绍过

【RocketMQ中Broker的刷盘源码分析】


在完成写入后,需要唤醒reputMessageService消息调度,以便Consumer的消费
关于消息调度详见  【RocketMQ中Broker的启动源码分析(二)】


当然前面说过master还会发送心跳消息,但这里明显没对心跳消息进行处理,只是appendToCommitLog调用时,传入了一个大小为0的byte数组,显然有些不合理,想不通


在完成后,还会调用reportSlaveMaxOffsetPlus方法:

 1 private boolean reportSlaveMaxOffsetPlus() {
 2     boolean result = true;
 3     long currentPhyOffset = HAService.this.defaultMessageStore.getMaxPhyOffset();
 4     if (currentPhyOffset > this.currentReportedOffset) {
 5         this.currentReportedOffset = currentPhyOffset;
 6         result = this.reportSlaveMaxOffset(this.currentReportedOffset);
 7         if (!result) {
 8             this.closeMaster();
 9             log.error("HAClient, reportSlaveMaxOffset error, " + this.currentReportedOffset);
10         }
11     }
12 
13     return result;
14 }

由于完成了写入,那么此时获取到的offset肯定比currentReportedOffset中保存的大,然后再次通过reportSlaveMaxOffset方法,将当前的offset报告给master


这其实上已经完成了异步master的异步复制过程


再来看看同步双写是如何实现的:
和刷盘一样,都是在Producer发送完消息,Broker进行完消息的存储后进行的

【RocketMQ中Broker的消息存储源码分析】

 

在CommitLog的handleHA方法:

 1 public void handleHA(AppendMessageResult result, PutMessageResult putMessageResult, MessageExt messageExt) {
 2     if (BrokerRole.SYNC_MASTER == this.defaultMessageStore.getMessageStoreConfig().getBrokerRole()) {
 3         HAService service = this.defaultMessageStore.getHaService();
 4         if (messageExt.isWaitStoreMsgOK()) {
 5             // Determine whether to wait
 6             if (service.isSlaveOK(result.getWroteOffset() + result.getWroteBytes())) {
 7                 GroupCommitRequest request = new GroupCommitRequest(result.getWroteOffset() + result.getWroteBytes());
 8                 service.putRequest(request);
 9                 service.getWaitNotifyObject().wakeupAll();
10                 boolean flushOK =
11                     request.waitForFlush(this.defaultMessageStore.getMessageStoreConfig().getSyncFlushTimeout());
12                 if (!flushOK) {
13                     log.error("do sync transfer other node, wait return, but failed, topic: " + messageExt.getTopic() + " tags: "
14                         + messageExt.getTags() + " client address: " + messageExt.getBornHostNameString());
15                     putMessageResult.setPutMessageStatus(PutMessageStatus.FLUSH_SLAVE_TIMEOUT);
16                 }
17             }
18             // Slave problem
19             else {
20                 // Tell the producer, slave not available
21                 putMessageResult.setPutMessageStatus(PutMessageStatus.SLAVE_NOT_AVAILABLE);
22             }
23         }
24     }
25 
26 }

这里就会检查Broker的类型,看以看到只对SYNC_MASTER即同步master进行了操作

这个操作过程其实就和同步刷盘类似

【RocketMQ中Broker的刷盘源码分析】

 

根据Offset+WroteBytes创建一条记录GroupCommitRequest,然后会将添加在List中
然后调用getWaitNotifyObject的wakeupAll方法,把阻塞中的所有WriteSocketService线程唤醒
因为master和slave是一对多的关系,那么这里就会有多个slave连接,也就有多个WriteSocketService线程,保证消息能同步到所有slave中

在唤醒WriteSocketService线程工作后,调用request的waitForFlush方法,将自身阻塞,预示着同步复制的真正开启


在HAService开启时,还开启了一个GroupTransferService线程:

 1 public void run() {
 2     log.info(this.getServiceName() + " service started");
 3 
 4     while (!this.isStopped()) {
 5         try {
 6             this.waitForRunning(10);
 7             this.doWaitTransfer();
 8         } catch (Exception e) {
 9             log.warn(this.getServiceName() + " service has exception. ", e);
10         }
11     }
12 
13     log.info(this.getServiceName() + " service end");
14 }

这里的工作原理和同步刷盘GroupCommitService基本一致,相似的地方我就不仔细分析了


GroupTransferService同样保存两张List:

1 private volatile List<CommitLog.GroupCommitRequest> requestsWrite = new ArrayList<>();
2 private volatile List<CommitLog.GroupCommitRequest> requestsRead = new ArrayList<>();

由这两张List做一个类似JVM新生代的复制算法
在handleHA方法中,就会将创建的GroupCommitRequest记录添加在requestsWrite这个List中


其中doWaitTransfer方法:

 1 private void doWaitTransfer() {
 2     synchronized (this.requestsRead) {
 3         if (!this.requestsRead.isEmpty()) {
 4             for (CommitLog.GroupCommitRequest req : this.requestsRead) {
 5                 boolean transferOK = HAService.this.push2SlaveMaxOffset.get() >= req.getNextOffset();
 6                 for (int i = 0; !transferOK && i < 5; i++) {
 7                     this.notifyTransferObject.waitForRunning(1000);
 8                     transferOK = HAService.this.push2SlaveMaxOffset.get() >= req.getNextOffset();
 9                 }
10 
11                 if (!transferOK) {
12                     log.warn("transfer messsage to slave timeout, " + req.getNextOffset());
13                 }
14 
15                 req.wakeupCustomer(transferOK);
16             }
17 
18             this.requestsRead.clear();
19         }
20     }
21 }

和刷盘一样,这里会通过复制算法,将requestsWrite和requestsRead进行替换,那么这里的requestsRead实际上就存放着刚才添加的记录


首先取出记录中的NextOffset和push2SlaveMaxOffset比较

push2SlaveMaxOffset值是通过slave发送过来的,在之前说过的ReadSocketService线程中的:

1 HAConnection.this.haService.notifyTransferSome(HAConnection.this.slaveAckOffset);

notifyTransferSome方法:

 1 public void notifyTransferSome(final long offset) {
 2     for (long value = this.push2SlaveMaxOffset.get(); offset > value; ) {
 3         boolean ok = this.push2SlaveMaxOffset.compareAndSet(value, offset);
 4         if (ok) {
 5             this.groupTransferService.notifyTransferSome();
 6             break;
 7         } else {
 8             value = this.push2SlaveMaxOffset.get();
 9         }
10     }
11 }

即便也多个slave连接,这里的push2SlaveMaxOffset永远会记录最大的那个offset


所以在doWaitTransfer中,根据当前NextOffset(完成写入后master本地的offset),进行判断

其实这里主要要考虑到WriteSocketService线程的工作原理,只要本地文件有更新,那么就会向slave发送数据,所以这里由于HA同步是发生在刷盘后的,那么就有可能在这个doWaitTransfer执行前,有slave已经将数据进行了同步,并且向master报告了自己offset,更新了push2SlaveMaxOffset的值

那么

1 boolean transferOK = HAService.this.push2SlaveMaxOffset.get() >= req.getNextOffset();
2 ```

这个判断就会为真,意味着节点中已经有了备份,所以就会直接调用

1 req.wakeupCustomer(transferOK);

以此来唤醒刚才在handleHA方法中的阻塞


若是判断为假,就说明没有一个slave完成同步,就需要

1 for (int i = 0; !transferOK && i < 5; i++) {
2     this.notifyTransferObject.waitForRunning(1000);
3     transferOK = HAService.this.push2SlaveMaxOffset.get() >= req.getNextOffset();
4 }

通过waitForRunning进行阻塞,超时等待,最多五次等待,超过时间会向Producer发送FLUSH_SLAVE_TIMEOUT


若是在超时时间内,有slave完成了同步,并向master发送了offset后,在notifyTransferSome方法中:

 1 public void notifyTransferSome(final long offset) {
 2     for (long value = this.push2SlaveMaxOffset.get(); offset > value; ) {
 3         boolean ok = this.push2SlaveMaxOffset.compareAndSet(value, offset);
 4         if (ok) {
 5             this.groupTransferService.notifyTransferSome();
 6             break;
 7         } else {
 8             value = this.push2SlaveMaxOffset.get();
 9         }
10     }
11 }

就会更新push2SlaveMaxOffset,并通过notifyTransferSome唤醒上面所说的阻塞

然后再次判断push2SlaveMaxOffset和getNextOffset
成功后唤醒刚才在handleHA方法中的阻塞,同步master的主从复制也就结束
由于同步master的刷盘是在主从复制前发生的,所以同步双写意味着master和slave都会完成消息的持久化

 

至此,RocketMQ中Broker的HA策略分析到此结束

posted @ 2019-08-08 07:41  松饼人  阅读(946)  评论(0编辑  收藏  举报