【Java】NIO中Selector的创建源码分析

在使用Selector时首先需要通过静态方法open创建Selector对象

1 public static Selector open() throws IOException {
2         return SelectorProvider.provider().openSelector();
3 }

可以看到首先是调用SelectorProvider的静态方法provider,得到一个Selector的提供者

 

 1 public static SelectorProvider provider() {
 2     synchronized (lock) {
 3         if (provider != null)
 4             return provider;
 5         return AccessController.doPrivileged(
 6             new PrivilegedAction<SelectorProvider>() {
 7                 public SelectorProvider run() {
 8                         if (loadProviderFromProperty())
 9                             return provider;
10                         if (loadProviderAsService())
11                             return provider;
12                         provider = sun.nio.ch.DefaultSelectorProvider.create();
13                         return provider;
14                     }
15                 });
16     }
17 }

这段代码的逻辑也比较简单,首先判断provider是否已经产生,若已经产生,则直接返回现有的;若没有,则需要调用AccessController的静态方法doPrivileged,该方法是一个native方法,就不说了;可以看到在实现的PrivilegedAction接口中的run方法,做了三次判断:

第一次是根据是系统属性,使用ClassLoader类加载:

 1 private static boolean loadProviderFromProperty() {
 2     String cn = System.getProperty("java.nio.channels.spi.SelectorProvider");
 3     if (cn == null)
 4         return false;
 5     try {
 6         Class<?> c = Class.forName(cn, true,
 7                                    ClassLoader.getSystemClassLoader());
 8         provider = (SelectorProvider)c.newInstance();
 9         return true;
10     } catch (ClassNotFoundException x) {
11         throw new ServiceConfigurationError(null, x);
12     } catch (IllegalAccessException x) {
13         throw new ServiceConfigurationError(null, x);
14     } catch (InstantiationException x) {
15         throw new ServiceConfigurationError(null, x);
16     } catch (SecurityException x) {
17         throw new ServiceConfigurationError(null, x);
18     }
19 }

先获取键值为"java.nio.channels.spi.SelectorProvider"的属性,若没有,则直接返回false;若设置了,则需要使用加载器直接加载系统属性设置的java.nio.channels.spi.SelectorProvider的实现类,再通过反射机制直接产生实例对象并赋值给静态成员provider,最后返回true。

第二次使用ServiceLoader加载:

 1 private static boolean loadProviderAsService() {
 2     ServiceLoader<SelectorProvider> sl =
 3         ServiceLoader.load(SelectorProvider.class,
 4                            ClassLoader.getSystemClassLoader());
 5     Iterator<SelectorProvider> i = sl.iterator();
 6     for (;;) {
 7         try {
 8             if (!i.hasNext())
 9                 return false;
10             provider = i.next();
11             return true;
12         } catch (ServiceConfigurationError sce) {
13             if (sce.getCause() instanceof SecurityException) {
14                 // Ignore the security exception, try the next provider
15                 continue;
16             }
17             throw sce;
18         }
19     }
20 }

有关ServiceLoader的加载过程可以看我的上一篇博客【Java】ServiceLoader源码分析,在这里我就不累赘了。
该方法调用ServiceLoader的load加载在"META-INF/services/"路径下指明的SelectorProvider.class的实现类(其实是懒加载,在迭代时才真正加载)得到ServiceLoader对象,通过该对象的带迭代器,遍历这个迭代器;可以看到若是迭代器不为空,则直接返回迭代器保存的第一个元素,即第一个被加载的类的对象,并赋值给provider,返回true;否则返回false;

第三次是使用的默认的SelectorProvider(windows环境为例):

1 public class DefaultSelectorProvider {
2     private DefaultSelectorProvider() {
3     }
4 
5     public static SelectorProvider create() {
6         return new WindowsSelectorProvider();
7     }
8 }

可以看到直接返回了WindowsSelectorProvider赋值给provider ;

此时provider无论如何都已经有了,接下来就是调用provider的openSelector方法。

WindowsSelectorProvider的openSelector方法:

1 public class WindowsSelectorProvider extends SelectorProviderImpl {
2     public WindowsSelectorProvider() {
3     }
4 
5     public AbstractSelector openSelector() throws IOException {
6         return new WindowsSelectorImpl(this);
7     }
8 }

可以看到仅仅是产生了WindowsSelectorImpl:

1 WindowsSelectorImpl(SelectorProvider var1) throws IOException {
2     super(var1);
3     this.wakeupSourceFd = ((SelChImpl)this.wakeupPipe.source()).getFDVal();
4     SinkChannelImpl var2 = (SinkChannelImpl)this.wakeupPipe.sink();
5     var2.sc.socket().setTcpNoDelay(true);
6     this.wakeupSinkFd = var2.getFDVal();
7     this.pollWrapper.addWakeupSocket(this.wakeupSourceFd, 0);
8 }

WindowsSelectorImpl首先调用父类SelectorImpl的构造方法:

 1 protected Set<SelectionKey> selectedKeys = new HashSet();
 2 protected HashSet<SelectionKey> keys = new HashSet();
 3 private Set<SelectionKey> publicKeys;
 4 private Set<SelectionKey> publicSelectedKeys;
 5 
 6 protected SelectorImpl(SelectorProvider var1) {
 7     super(var1);
 8     if (Util.atBugLevel("1.4")) {
 9         this.publicKeys = this.keys;
10         this.publicSelectedKeys = this.selectedKeys;
11     } else {
12         this.publicKeys = Collections.unmodifiableSet(this.keys);
13         this.publicSelectedKeys = Util.ungrowableSet(this.selectedKeys);
14     }
15 
16 }

SelectorImpl同样调用父类AbstractSelector的构造:

1 protected AbstractSelector(SelectorProvider provider) {
2         this.provider = provider;
3 }

此时的provider就是刚才产生的WindowsSelectorProvider对象;
在SelectorImpl中还会对其成员有一系列的赋值操作;
上述都完成后才继续完成WindowsSelectorImpl的构造。

WindowsSelectorImpl在进行this.wakeupSourceFd = ((SelChImpl)this.wakeupPipe.source()).getFDVal()之前,其wakeupPipe成员如下:

1 private final Pipe wakeupPipe = Pipe.open();

wakeupPipe管道通过Pipe.open()赋值:

1 public static Pipe open() throws IOException {
2     return SelectorProvider.provider().openPipe();
3 }

可以看到实际上 SelectorProvider.provider()的provider的openPipe方法,而这个provider就是WindowsSelectorProvider,而WindowsSelectorProvider继承自SelectorProviderImpl,openPipe方法是在SelectorProviderImpl里实现的:

1 public Pipe openPipe() throws IOException {
2     return new PipeImpl(this);
3 }

该方法直接产生了PipeImpl对象,并将WindowsSelectorProvider对象传入进去:

1 PipeImpl(SelectorProvider var1) throws IOException {
2     try {
3         AccessController.doPrivileged(new PipeImpl.Initializer(var1));
4     } catch (PrivilegedActionException var3) {
5         throw (IOException)var3.getCause();
6     }
7 }

可以看到这个构造方法实际上是以特权模式运行的PipeImpl的内部类Initializer的run方法(doPrivileged需要的参数是PrivilegedExceptionAction接口的实现类,该接口只有run方法):
Initializer 的初始化:

 1 private class Initializer implements PrivilegedExceptionAction<Void> {
 2     private final SelectorProvider sp;
 3     private IOException ioe;
 4     
 5     private Initializer(SelectorProvider var2) {
 6         this.ioe = null;
 7         this.sp = var2;
 8     }
 9     ......
10 }

该构造方法给sp赋值为传入进来的WindowsSelectorProvider对象,令ioe=null;
其所实现的run方法如下:

 1 public Void run() throws IOException {
 2     PipeImpl.Initializer.LoopbackConnector var1 = new PipeImpl.Initializer.LoopbackConnector();
 3     var1.run();
 4     if (this.ioe instanceof ClosedByInterruptException) {
 5         this.ioe = null;
 6         Thread var2 = new Thread(var1) {
 7             public void interrupt() {
 8             }
 9         };
10         var2.start();
11 
12         while(true) {
13             try {
14                 var2.join();
15                 break;
16             } catch (InterruptedException var4) {
17                 ;
18             }
19         }
20 
21         Thread.currentThread().interrupt();
22     }
23 
24     if (this.ioe != null) {
25         throw new IOException("Unable to establish loopback connection", this.ioe);
26     } else {
27         return null;
28     }
29 }

首先产生LoopbackConnector 对象,是Initializer的内部类,而且实现了Runnable接口:

1 private class LoopbackConnector implements Runnable {
2     private LoopbackConnector() {
3     }
4 }

其实现的run方法如下:

 1 public void run() {
 2     ServerSocketChannel var1 = null;
 3     SocketChannel var2 = null;
 4     SocketChannel var3 = null;
 5 
 6     try {
 7         ByteBuffer var4 = ByteBuffer.allocate(16);
 8         ByteBuffer var5 = ByteBuffer.allocate(16);
 9         InetAddress var6 = InetAddress.getByName("127.0.0.1");
10 
11         assert var6.isLoopbackAddress();
12 
13         InetSocketAddress var7 = null;
14 
15         while(true) {
16             if (var1 == null || !var1.isOpen()) {
17                 var1 = ServerSocketChannel.open();
18                 var1.socket().bind(new InetSocketAddress(var6, 0));
19                 var7 = new InetSocketAddress(var6, var1.socket().getLocalPort());
20             }
21 
22             var2 = SocketChannel.open(var7);
23             PipeImpl.RANDOM_NUMBER_GENERATOR.nextBytes(var4.array());
24 
25             do {
26                 var2.write(var4);
27             } while(var4.hasRemaining());
28 
29             var4.rewind();
30             var3 = var1.accept();
31 
32             do {
33                 var3.read(var5);
34             } while(var5.hasRemaining());
35 
36             var5.rewind();
37             if (var5.equals(var4)) {
38                 PipeImpl.this.source = new SourceChannelImpl(Initializer.this.sp, var2);
39                 PipeImpl.this.sink = new SinkChannelImpl(Initializer.this.sp, var3);
40                 break;
41             }
42 
43             var3.close();
44             var2.close();
45         }
46     } catch (IOException var18) {
47         try {
48             if (var2 != null) {
49                 var2.close();
50             }
51 
52             if (var3 != null) {
53                 var3.close();
54             }
55         } catch (IOException var17) {
56             ;
57         }
58 
59         Initializer.this.ioe = var18;
60     } finally {
61         try {
62             if (var1 != null) {
63                 var1.close();
64             }
65         } catch (IOException var16) {
66             ;
67         }
68 
69     }
70 
71 }

在这个run方法中首先定义了三个Channel一个ServerSocketChannel和两个SocketChannel,然后申请了两个十六字节的ByteBuffer缓冲区,定义了一个回送地址var6;在while循环中先检查ServerSocketChannel是否开启了,若没有则需要调用open方法开启并赋值给var1,绑定地址为var6即回送地址,端口为0,令var7这个InetSocketAddress对象的地址是var6,端口是ServerSocketChannel的端口;ServerSocketChannel初始化完毕,初始化一个SocketChannel即var2,通过刚才的var7这个InetSocketAddress对象和ServerSocketChannel建立连接;

在PipeImpl里有一个静态成员:

1 private static final Random RANDOM_NUMBER_GENERATOR = new SecureRandom();

RANDOM_NUMBER_GENERATOR 听名字就知道它是用来生成随机数;
通过RANDOM_NUMBER_GENERATOR将从生成的随机数存放在其中一个缓冲区ByteBuffer(var4)中,然后通过刚才连接好的SocketChannel即var2的write方法写入缓冲区中的所有可用数据发送给ServerSocketChannel;令var4缓冲区标志置0;接着ServerSocketChannel调用accept方法侦听刚才的连接产生一个SocketChannel对象var3,从var3中读取数据存放在缓冲区var5中,令var5缓冲区标志置0;然后比较var4和var5中的内容是否一致,若是一致则给PipeImpl的成员source和sink分别初始化保存起来,若不一致就继续循环,不断地重复上述过程,直至Pipe通道成功建立;至此结束LoopbackConnector的run方法。
其在连接建立的过程中若是出现了异常会通过Initializer的ioe成员保存异常。

再回到Initializer的run方法,在完成LoopbackConnector的run方法后,再根据ioe判读是否在刚才的连接建立中出现了ClosedByInterruptException异常,若是出现还需要通过线程启动LoopbackConnector的run方法直至其结束;若不是ClosedByInterruptException异常则直接抛出IOException。

至此PipeImpl的构造结束,再回到WindowsSelectorImpl的构造,通过上述的操作产生的PipeImpl对象就赋值给了wakeupPipe成员;wakeupPipe的source就是刚才产生的SourceChannelImpl对象,wakeupPipe的sink就是刚才产生的SinkChannelImpl对象,再使用wakeupSourceFd保存source的fdVal值和wakeupSinkFd保存sink的fdVal值;并且禁用Nagle算法,最后使用pollWrpper成员保存source的fdVal值。

上述建立的这个连接通道的主要目的不是为了确保能建立连接,而是为了解决Selector的select方法的阻塞问题,调用select方法时只有注册在Selector上的channel有事件就绪时才会被唤醒,而Selector提供的wakeup方法就利用了上述建立好的通道,通过SinkChannel给SourceChannel发送信号量,使得select被唤醒,具体实现会在后续的博客给出。

Selector到此创建完毕。

posted @ 2019-05-16 11:00  松饼人  阅读(1045)  评论(0编辑  收藏  举报