HDU 4622 Reincarnation (后缀自动机)
Now you are back,and have a task to do:
Given you a string s consist of lower-case English letters only,denote f(s) as the number of distinct sub-string of s.
And you have some query,each time you should calculate f(s[l...r]), s[l...r] means the sub-string of s start from l end at r.
Given you a string s consist of lower-case English letters only,denote f(s) as the number of distinct sub-string of s.
And you have some query,each time you should calculate f(s[l...r]), s[l...r] means the sub-string of s start from l end at r.
InputThe first line contains integer T(1<=T<=5), denote the number of the test cases.
For each test cases,the first line contains a string s(1 <= length of s <= 2000).
Denote the length of s by n.
The second line contains an integer Q(1 <= Q <= 10000),denote the number of queries.
Then Q lines follows,each lines contains two integer l, r(1 <= l <= r <= n), denote a query.OutputFor each test cases,for each query,print the answer in one line.Sample Input
2 bbaba 5 3 4 2 2 2 5 2 4 1 4 baaba 5 3 3 3 4 1 4 3 5 5 5
Sample Output
3 1 7 5 8 1 3 8 5 1
题意是求[l,r]的区间里有多少个子串,因为字符串的长度范围很小,我们可以将每个后缀分别放入自动机中预处理。
然后节点p的贡献就是p->step-p->link->step;
就能算出当前子串的贡献
代码如下:
#include <iostream> #include <string.h> #include <algorithm> #include <stdio.h> using namespace std; const int N=2200; typedef long long ll; ll num; ll ans[N][N]; char A[N]; struct State { State *link,*go[26]; int step; int maxx; void clear() { maxx=0; link=0; step=0; memset(go,0,sizeof(go)); } int gx() { if(link==NULL)return 0; return step-link->step; } }*root,*last; int cnt[N]; int lenA; State statePool[N*2],*b[N*2],*cur; void init() { cur=statePool; root=last=cur++; root->clear(); } void Insert(int w) { State *p=last; State *np=cur++; np->clear(); np->step=p->step+1; while(p&&!p->go[w]) p->go[w]=np,p=p->link; if(p==0){ np->link=root; num+=np->gx(); } else { State *q=p->go[w]; if(p->step+1==q->step){ np->link=q; num+=np->gx(); } else { State *nq=cur++; nq->clear(); memcpy(nq->go,q->go,sizeof(q->go)); num-=q->gx(); nq->step=p->step+1; nq->link=q->link; q->link=nq; np->link=nq; num+=q->gx()+nq->gx()+np->gx(); while(p&&p->go[w]==q) p->go[w]=nq, p=p->link; } } last=np; } void solve() { for(int i=0;i<lenA;i++) { num=0; init(); for(int j=i;j<lenA;j++) { Insert(A[j]-'a'); ans[i][j]=num; } } } int main() { int t,q,l,r; scanf("%d",&t); while(t--) { memset(ans,0,sizeof(ans)); scanf("%s",A); lenA=strlen(A); solve(); scanf("%d",&q); while(q--) { scanf("%d%d",&l,&r); printf("%lld\n",ans[l-1][r-1]); } } return 0; }