Dropping tests

Dropping tests

有n对数,记做\(\{a_i,b_i\}\),现在你只能不选择k对数,使选出来的数a之和除以b之和乘以100最大,\(1 \leq k ≤ n ≤ 1000\)

显然看到某某和除以某某和,就想到了分数规划,于是设

\[ans=\frac{\sum_{i=1}^nx_ia_i}{\sum_{i=1}^nx_ib_i} \]

所以二分式为

\[\sum_{i=1}^nx_i(a_i-ans\times b_i) \]

实际上问题即变成选出n-k对\((a_i-ans\times b_i)\)使之最大,于是我们最自然是考虑排序优化,而这个时间复杂度是我们所能接受的,接着按
照二分或者迭代去做即可。

参考代码:

二分

#include <iostream>
#include <cstdio>
#include <algorithm>
#define il inline
#define ri register
#define db double
#define exact 0.00000001
int n,k;
db a[2001],b[2001],c[2001];
using namespace std;
il bool check(db);
il db dfs(db,db);
int main(){
    int i,j;
    while(scanf("%d%d",&n,&k),n||k){
        for(i=1;i<=n;++i)scanf("%lf",&a[i]);
        for(i=1;i<=n;++i)scanf("%lf",&b[i]);
        printf("%0.f\n",dfs(0,1));
    }
    return 0;
}
il bool check(db s){
    int i;db j(0);
    for(i=1;i<=n;++i)c[i]=a[i]-s*b[i];
    sort(c+1,c+n+1);for(i=k+1;i<=n;++i)j+=c[i];
    if(j>exact)return true;return false;
}
il db dfs(db l,db r){
    db mid;
    while(r-l>exact){
        mid=(l+r)/2;
        if(check(mid))l=mid+exact;
        else r=mid-exact;
    }return (l+r)*50;
}

迭代

#include <iostream>
#include <cstdio>
#include <algorithm>
#define il inline
#define ri register
#define db double
#define exact 0.00000001
using namespace std;
struct save{
    db data;int id;
    il bool operator<(const save&x){
        return data<x.data;
    }
}c[2001];
db a[2001],b[2001];
int main(){
    int n,k,i;db l,mom,son;
    while(scanf("%d%d",&n,&k),n||k){
        for(i=1;i<=n;++i)scanf("%lf",&a[i]);
        for(i=1;i<=n;++i)scanf("%lf",&b[i]);
        l=0;while(true){
            for(i=1;i<=n;++i)c[i].data=a[i]-b[i]*l,c[i].id=i;
            sort(c+1,c+n+1),mom=0,son=0;
            for(i=k+1;i<=n;++i)son+=a[c[i].id],mom+=b[c[i].id];
            if(son/mom-l>exact)l=son/mom;
            else break;
        }printf("%.0f\n",l*100);
    }
    return 0;
}
posted @ 2019-05-02 18:03  a1b3c7d9  阅读(127)  评论(0编辑  收藏  举报