Java实现 LeetCode 96 不同的二叉搜索树
96. 不同的二叉搜索树
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
PS:
动态规划
假设n个节点存在二叉排序树的个数是G(n),令f(i)为以i为根的二叉搜索树的个数
即有:G(n) = f(1) + f(2) + f(3) + f(4) + … + f(n)
n为根节点,当i为根节点时,其左子树节点个数为[1,2,3,…,i-1],右子树节点个数为[i+1,i+2,…n],所以当i为根节点时,其左子树节点个数为i-1个,右子树节点为n-i,即f(i) = G(i-1)*G(n-i),
上面两式可得:G(n) = G(0)G(n-1)+G(1)(n-2)+…+G(n-1)*G(0)
class Solution {
public int numTrees(int n) {
int[] dp = new int[n+1];
dp[0] = 1;
for(int i=1;i<=n;i++){
for(int j =1;j<=i;j++){
dp[i] += dp[j-1] * dp[i-j];
}
}
return dp[n];
}
}