Java实现 LeetCode 834 树中距离之和(DFS+分析)

834. 树中距离之和

给定一个无向、连通的树。树中有 N 个标记为 0…N-1 的节点以及 N-1 条边 。

第 i 条边连接节点 edges[i][0] 和 edges[i][1] 。

返回一个表示节点 i 与其他所有节点距离之和的列表 ans。

示例 1:

输入: N = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
输出: [8,12,6,10,10,10]
解释:
如下为给定的树的示意图:
0
/
1 2
/|
3 4 5

我们可以计算出 dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
也就是 1 + 1 + 2 + 2 + 2 = 8。 因此,answer[0] = 8,以此类推。
说明: 1 <= N <= 10000

PS:
这个题看了半个小时没找到思路,只能去看题解,原来我的菜

class Solution {
    //这个题我看了半天,怎么看怎么超时,原来是中间有规律,该说不说,这个规律真的难找
  int[] ans, count;
    List<Set<Integer>> graph;
    int N;
    public int[] sumOfDistancesInTree(int N, int[][] edges) {
        this.N = N;
        graph = new ArrayList<Set<Integer>>();
        ans = new int[N];
        count = new int[N];
        Arrays.fill(count, 1);

        for (int i = 0; i < N; ++i)
            graph.add(new HashSet<Integer>());
        for (int[] edge: edges) {
            graph.get(edge[0]).add(edge[1]);
            graph.get(edge[1]).add(edge[0]);
        }
        dfs(0, -1);
        dfs2(0, -1);
        return ans;
    }

    public void dfs(int node, int parent) {
        for (int child: graph.get(node))
            if (child != parent) {
                dfs(child, node);
                //count[node]是以node为根的节点个数
                count[node] += count[child];
                //ans[node]是所有结点道node的距离
                //就是ans[child]+child与node的距离
                ans[node] += ans[child] + count[child];
            }
    }

    public void dfs2(int node, int parent) {
        for (int child: graph.get(node))
            if (child != parent) {
                // ans[node] += ans[child] + count[child];
                //这是ans[child]的前半部分,
                //后半部分是,不是以child为根的节点个数
                //后半部分是,因为,我们可以发现,每一个count都是多加了自己本身的,
                //也就是我们前面的child是多加了自己本身的,所以不是child的根节点都没加上
                ans[child] = ans[node] - count[child] + N - count[child];
                dfs2(child, node);
            }
    }
 
}
posted @ 2020-05-10 22:44  南墙1  阅读(113)  评论(0编辑  收藏  举报