理解MapReduce

1. 用Python编写WordCount程序并提交任务

程序

WordCount

输入

一个包含大量单词的文本文件

输出

文件中每个单词及其出现次数(频数),并按照单词字母顺序排序,每个单词和其频数占一行,单词和频数之间有间隔

  1. 编写map函数,reduce函数
    cd /home/hadoop/txt
    sudo gedit mapper.py
    
    import sys
    for danci in sys.stdin:
         danci=danci.strip()
         words=danci.split()
         for word in words:
              print '%s\t%s' % (word,1)
    
    from operator import itemgetter
    import sys
    
    current_word=None
    current_count=0
    word=None
    
    for danci in sys.stdin:
         danci=danci.strip()
         word,count=danci.split('\t',1)
         try:
              count=int(count)
         except ValueError:
              continue
         if current_word==word:
              current_count+=count
         else:
              if current_word:
                  print '%s\t%s' % (current_word,current_count)
              current_count=count
              current_word=word
    if current_word==word:
         print '%s\t%s' % (current_word,current_count)
    

      

  2. 将其权限作出相应修改
    chmod a+x /home/hadoop/mapper.py
    chmod a+x /home/hadoop/wc/reducer.py

      

  3. 本机上测试运行代码

     

     
  4. 放到HDFS上运行
    1. 将之前爬取的文本文件上传到hdfs上
    2. 用Hadoop Streaming命令提交任务

      echo "foo foo quux labs foo bar quux" | /home/hadoop/hp/mapper.py

      echo "foo foo quux labs foo bar quux" | /home/hadoop/hp/mapper.py | sort -k1,1 | /home/hadoop/hp/reducer.p

        

  5. 查看运行结果

 

 

2. 用mapreduce 处理气象数据集

编写程序求每日最高最低气温,区间最高最低气温

  1. 气象数据集下载地址为:ftp://ftp.ncdc.noaa.gov/pub/data/noaa
  2. 按学号后三位下载不同年份月份的数据(例如201506110136号同学,就下载2013年以6开头的数据,看具体数据情况稍有变通)
  3. 解压数据集,并保存在文本文件中
  4. 对气象数据格式进行解析
  5. 编写map函数,reduce函数
  6. 将其权限作出相应修改
  7. 本机上测试运行代码
  8. 放到HDFS上运行
    1. 将之前爬取的文本文件上传到hdfs上
    2. 用Hadoop Streaming命令提交任务
  9. 查看运行结果
    cd /usr/hadoop
    sodu mkdir hp
    cd /usr/hadoop/hp
     
    wget -D --accept-regex=REGEX -P data -r -c ftp://ftp.ncdc.noaa.gov/pub/data/noaa/2013/4*
     
    cd /usr/hadoop/hp/data/ftp.ncdc.noaa.gov/pub/data/noaa/2014
    sudo zcat 1*.gz >hptext.txt
    cd /usr/hadoop/hp
     
     
    import sys
    for line in sys.stdin:
         line = line.strip()
         dtext = line[15:23]
         text = line[87:92]
     
         print '%s\t%s' % (d,t)
     
     
    from operator import itemggetter
    import sys
     
    current_word = None
    current_count = 0
    word = None
     
    for line in sys.stdin:
         line = line.strip()
         word,count = line.split('\t', 1)
         try:
              count = int(count)
         except ValueError:
              continue
     
         if current_word == word:
             if current_count > count:
                  current_count = count
         else:
             if current_word:
                 print '%s\t%s' % (current_word, current_count)
             current_count = count
             current_word = word
     
    if current_word == word:
         print '%s\t%s' % (current_word, current_count)
     
    chmod a+x /usr/hadoop/hp/mapper.py
    chmod a+x /usr/hadoop/hp/reducer.py
    

      

posted @ 2018-05-10 17:57  089-袁佳鹏  阅读(118)  评论(0编辑  收藏  举报