891. Super Egg Drop

You are given K eggs, and you have access to a building with N floors from 1 to N

Each egg is identical in function, and if an egg breaks, you cannot drop it again.

You know that there exists a floor F with 0 <= F <= N such that any egg dropped at a floor higher than F will break, and any egg dropped at or below floor F will not break.

Each move, you may take an egg (if you have an unbroken one) and drop it from any floor X (with 1 <= X <= N). 

Your goal is to know with certainty what the value of F is.

What is the minimum number of moves that you need to know with certainty what F is, regardless of the initial value of F?

 Example 1:

Input: K = 1, N = 2
Output: 2
Explanation: 
Drop the egg from floor 1.  If it breaks, we know with certainty that F = 0.
Otherwise, drop the egg from floor 2.  If it breaks, we know with certainty that F = 1.
If it didn't break, then we know with certainty F = 2.
Hence, we needed 2 moves in the worst case to know what F is with certainty.

 

K个鸡蛋,N层楼,在最坏的情况下,扔多少次才能够准确测试出哪层楼开始往下扔,鸡蛋会碎。

1、考虑1个鸡蛋的情况,所以必须从1楼开始扔到N楼,需要N次。 total(x, 1) = x

2、考虑2个鸡蛋,假设最少需要x次才能测出。

我们假设第一个鸡蛋在t楼往下扔,破了,所以剩下的t-1楼需要另外一个鸡蛋一层层测试,所以需要t-1次。那么就有 1 + t - 1 = x,t = x。

如果没有破,我们假设第一个鸡蛋第二次在x + t的处往下扔,破了,所以第二个鸡蛋只剩x - 2次测试机会,所以t = x - 1

同理,后面有 t = x - 2, x - 3 ... 1

那么就有 x + x - 1 + x - 2 + ... + 1 = x(x + 1) / 2 层楼被测试,   total(x, 2)  = 1 + total(x - 1, 1) + 1 + total(x - 2, 1) + ... + 1 + total(1, 1) + 1 + total(0, 1) = x(x + 1) / 2 >= N

3、考虑有3个鸡蛋,同2中思想,假设第一个鸡蛋在t1破碎,那么剩余的两个鸡蛋要在x - 1次机会中测试完t1 - 1层,所以有 1 + (x - 1)(x) / 2 = t1

假设第一个鸡蛋在t1 + t2破碎,那么剩余的两个鸡蛋要在x - 2次机会中测试完t2 - 1层,所以有 1 + (x - 2)(x - 1) / 2 = t2

那么就有 total(x, 3) = 1 + total(x - 1, 2) + ... + 1 + total(1, 2) = 1 + (x - 1)(x) / 2 + 1 + (x - 2)(x - 1) / 2 + ... + 1 >= N

4、假设有K个鸡蛋,同理递归推公式

total(x, K) = 1 + total(x - 1, K - 1) + 1 + total(x - 2, K - 1) + ... + 1 + total(1, K - 1) >= N

所以这道题就转化为求x, 使得 total(x, K) >= N

 

 1 class Solution {
 2 public:
 3     int total(int num, int k) {
 4         if (k == 1)
 5             return num;
 6         int sum = 0;
 7         while (num)
 8             sum += 1 + total(--num, k - 1);
 9         return sum;
10     }
11     int superEggDrop(int K, int N) {
12         for (int i = 1; i <= N; ++i) {
13             if(total(i, K) >= N) {
14                 return i;
15             }
16         }
17     }
18 };

 改进:用dp计算total,递推公式:total(x, k) = total(x - 1, k) + total(x - 1, k - 1) + 1

class Solution {
public:
    int total(int num, int k) {
        vector<vector<int>> dp(k, vector<int>(num, 1));
        for (int i = 0; i < num; ++i)
            dp[0][i] = i + 1;        
        for (int i = 1; i < k; ++i)
            for (int j = 1; j < num; ++j)
                dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1] + 1;
        return dp[k - 1][num - 1];
    }
    int superEggDrop(int K, int N) {
        for (int i = 1; i <= N; ++i) {
            if(total(i, K) >= N) {
                return i;
            }
        }
    }
};

经过测试不建议把main函数里面的total也挪进去用dp算,因为实际上当N和K都很大时,往往最后的n << N,这样子开一个N * K的数组就消耗很大。

如果放进去的话,先遍历K会比先遍历N更快,理由同上。

posted @ 2018-08-13 15:21  Zzz...y  阅读(705)  评论(0编辑  收藏  举报