elasticsearch基础
分布式搜索引擎01
1.初识elasticsearch
1.1.了解ES
1.1.1.elasticsearch的作用
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容
例如:
-
在GitHub搜索代码
在电商网站搜索商品
在百度搜索答案
在打车软件搜索附近的车
1.1.2.ELK技术栈
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
1.1.3.elasticsearch和lucene
elasticsearch底层是基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。
elasticsearch的发展历史:
-
2004年Shay Banon基于Lucene开发了Compass
-
2010年Shay Banon 重写了Compass,取名为Elasticsearch。
1.1.4.为什么不是其他搜索技术?
目前比较知名的搜索引擎技术排名:
虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
1.1.5.总结
什么是elasticsearch?
-
一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
什么是elastic stack(ELK)?
-
是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch
什么是Lucene?
-
是Apache的开源搜索引擎类库,提供了搜索引擎的核心API
1.2.倒排索引
倒排索引的概念是基于MySQL这样的正向索引而言的。
1.2.1.正向索引
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
1.2.2.倒排索引
倒排索引中有两个非常重要的概念:
-
文档(
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息 -
词条(
Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
创建倒排索引是对正向索引的一种特殊处理,流程如下:
-
将每一个文档的数据利用算法分词,得到一个个词条
-
创建表,每行数据包括词条、词条所在文档id、位置等信息
-
因为词条唯一性,可以给词条创建索引,例如hash表结构索引
如图:
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
4)拿着文档id到正向索引中查找具体文档。
如图:
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
1.2.3.正向和倒排
那么为什么一个叫做正向索引,一个叫做倒排索引呢?
-
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
-
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
是不是恰好反过来了?
那么两者方式的优缺点是什么呢?
正向索引:
-
优点:
-
可以给多个字段创建索引
-
根据索引字段搜索、排序速度非常快
-
-
缺点:
-
根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
-
倒排索引:
-
优点:
-
根据词条搜索、模糊搜索时,速度非常快
-
-
缺点:
-
只能给词条创建索引,而不是字段
-
无法根据字段做排序
-
1.3.es的一些概念
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。
1.3.1.文档和字段
elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:
而Json文档中往往包含很多的字段(Field),类似于数据库中的列。
1.3.2.索引和映射
索引(Index),就是相同类型的文档的集合。
例如:
-
所有用户文档,就可以组织在一起,称为用户的索引;
-
所有商品的文档,可以组织在一起,称为商品的索引;
-
所有订单的文档,可以组织在一起,称为订单的索引;
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。
1.3.3.mysql与elasticsearch
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长支出:
-
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
-
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
-
对安全性要求较高的写操作,使用mysql实现
-
对查询性能要求较高的搜索需求,使用elasticsearch实现
-
两者再基于某种方式,实现数据的同步,保证一致性
1.4.安装elasticsearch、kibana、分词器
1.4.1.安装es、kibana
参考课前资料:
1.4.2.分词器
参考课前资料:
1.4.3.总结
分词器的作用是什么?
-
创建倒排索引时对文档分词
-
用户搜索时,对输入的内容分词
IK分词器有几种模式?
-
ik_smart:智能切分,粗粒度
-
ik_max_word:最细切分,细粒度
IK分词器如何拓展词条?如何停用词条?
-
利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
-
在词典中添加拓展词条或者停用词条
2.索引库操作
索引库就类似数据库表,mapping映射就类似表的结构。
我们要向es中存储数据,必须先创建“库”和“表”。
2.1.mapping映射属性
mapping是对索引库中文档的约束,常见的mapping属性包括:
-
type:字段数据类型,常见的简单类型有:
-
字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
-
数值:long、integer、short、byte、double、float、
-
布尔:boolean
-
日期:date
-
对象:object
-
-
index:是否创建索引,默认为true
-
analyzer:使用哪种分词器
-
properties:该字段的子字段
例如下面的json文档:
{ "age": 21, "weight": 52.1, "isMarried": false, "info": "黑马程序员Java讲师", "email": "xxx@itcast.cn", "score": [99.1, 99.5, 98.9], "name": { "firstName": "云", "lastName": "赵" } }
对应的每个字段映射(mapping):
-
age:类型为 integer;参与搜索,因此需要index为true;无需分词器
-
weight:类型为float;参与搜索,因此需要index为true;无需分词器
-
-
info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
-
email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
-
score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
-
name:类型为object,需要定义多个子属性
-
name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
-
name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
-
2.2.索引库的CRUD
这里我们统一使用Kibana编写DSL的方式来演示。
2.2.1.创建索引库和映射
基本语法:
-
请求方式:PUT
-
请求路径:/索引库名,可以自定义
-
请求参数:mapping映射
示例:
1 PUT /heima 2 { 3 "mappings": { 4 "properties": { 5 "info": { 6 "type": "text", 7 "analyzer": "ik_smart" 8 }, 9 "email": { 10 "type": "keyword", 11 "index": false 12 }, 13 "name": { 14 "properties": { 15 "firstName": { 16 "type": "keyword" 17 }, 18 "lastName": { 19 "type": "keyword" 20 } 21 } 22 } 23 } 24 } 25 }
2.2.2.查询索引库
基本语法:
-
请求方式:GET
-
请求路径:/索引库名
-
格式:
GET /索引库名
示例:
GET /heima
2.2.3.修改索引库
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。
因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
示例:
PUT /heima/_mapping { "properties": { "age": { "type": "integer" } } }
2.2.4.删除索引库
语法:
-
请求方式:DELETE
-
请求路径:/索引库名
-
请求参数:无
格式:
DELETE /heima
2.2.5.总结
索引库操作有哪些?
-
创建索引库:PUT /索引库名
-
查询索引库:GET /索引库名
-
删除索引库:DELETE /索引库名
-
添加字段:PUT /索引库名/_mapping
3.文档操作
3.1.新增文档
示例:
POST /heima/_doc/1 { "info": "黑马程序员Java讲师", "email": "zy@itcast.cn", "name": { "firstName": "赵", "lastName": "云" } }
注意:重复执行,就是修改覆盖
响应:
3.2.查询文档
根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。
示例:
GET /heima/_doc/1
查看结果:
3.3.删除文档
删除使用DELETE请求,同样,需要根据id进行删除:
示例:
# 根据id删除数据
DELETE /heima/_doc/1
结果:

3.4.修改文档
修改有两种方式:
-
全量修改:直接覆盖原来的文档
-
增量修改:修改文档中的部分字段
3.4.1.全量修改
全量修改是覆盖原来的文档,其本质是:根据指定的id删除文档,新增一个相同id的文档
注意:如果根据id删除时,id不存在,就变成了新增操作了
示例:
PUT /heima/_doc/1 { "info": "黑马程序员高级Java讲师", "email": "zy@itcast.cn", "name": { "firstName": "赵", "lastName": "云" } }
3.4.2.增量修改
增量修改是只修改指定id匹配的文档中的部分字段。
示例:
POST /heima/_update/1 { "doc": { "email": "zhaoyun@itcast.cn" } }
3.5.总结
文档操作有哪些?
-
创建文档:POST /{索引库名}/_doc/文档id { json文档 }
-
查询文档:GET /{索引库名}/_doc/文档id
-
删除文档:DELETE /{索引库名}/_doc/文档id
-
修改文档:
-
全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
-
增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}
-
4. RestAPI
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html
其中的Java Rest Client又包括两种:
-
Java Low Level Rest Client
-
Java High Level Rest Client

我们学习的是 Java HighLevel Rest Client 客户端API
4.0.1.导入数据
数据结构如下:
CREATE TABLE `tb_hotel` ( `id` bigint(20) NOT NULL COMMENT '酒店id', `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店', `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路', `price` int(10) NOT NULL COMMENT '酒店价格;例:329', `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分', `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家', `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海', `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻', `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥', `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497', `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925', `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
4.0.2.导入项目
然后导入课前资料提供的项目:
项目结构如图:
4.0.3.mapping映射分析
创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:
-
字段名
-
字段数据类型
-
是否参与搜索
-
是否需要分词
-
如果分词,分词器是什么?
其中:
-
字段名、字段数据类型,可以参考数据表结构的名称和类型
-
是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
-
是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
-
分词器,我们可以统一使用ik_max_word
来看下酒店数据的索引库结构:
PUT /hotel { "mappings": { "properties": { "id": { "type": "keyword" }, "name":{ "type": "text", "analyzer": "ik_max_word", "copy_to": "all" }, "address":{ "type": "keyword", "index": false }, "price":{ "type": "integer" }, "score":{ "type": "integer" }, "brand":{ "type": "keyword", "copy_to": "all" }, "city":{ "type": "keyword", "copy_to": "all" }, "starName":{ "type": "keyword" }, "business":{ "type": "keyword" }, "location":{ "type": "geo_point" }, "pic":{ "type": "keyword", "index": false }, "all":{ "type": "text", "analyzer": "ik_max_word" } } } }
几个特殊字段说明:
-
location:地理坐标,里面包含精度、纬度
-
all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索
地理坐标说明:
copy_to说明:
4.0.4.初始化RestClient
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。
分为三步:
1)引入es的RestHighLevelClient依赖:
<dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency>
2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:
<properties> <java.version>1.8</java.version> <elasticsearch.version>7.12.1</elasticsearch.version> </properties>
3)初始化RestHighLevelClient:
初始化的代码如下:
private RestHighLevelClient client = new RestHighLevelClient(
RestClient.builder(HttpHost.create("http://192.168.100.150:9200")));
这里为了单元测试方便,我们创建一个测试类 A_HotelIndexTest :
package cn.itcast.hotel; import cn.itcast.hotel.constants.HotelConstants; import org.apache.http.HttpHost; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.RestHighLevelClient; import org.junit.jupiter.api.Test; import java.io.IOException; /* * 针对索引库的操作: * CreateIndexRequest * GetIndexRequest * DeleteIndexRequest */ public class A_HotelIndexTest { private RestHighLevelClient client = new RestHighLevelClient( RestClient.builder(HttpHost.create("http://192.168.100.150:9200"))); //创建hotel索引库 @Test public void testCreateIndex() throws IOException { } }
4.1.1.代码解读
创建索引库的API如下:
代码分为三步:
-
1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
-
2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
-
3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。
4.1.2.完整示例
在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:
package cn.itcast.hotel.constants; public class HotelConstants { public static final String SOURCE = "{\n" + " \"mappings\": {\n" + " \"properties\": {\n" + " \"id\": {\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"name\":{\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"address\":{\n" + " \"type\": \"keyword\",\n" + " \"index\": false\n" + " },\n" + " \"price\":{\n" + " \"type\": \"integer\"\n" + " },\n" + " \"score\":{\n" + " \"type\": \"integer\"\n" + " },\n" + " \"brand\":{\n" + " \"type\": \"keyword\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"city\":{\n" + " \"type\": \"keyword\",\n" + " \"copy_to\": \"all\"\n" + " },\n" + " \"starName\":{\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"business\":{\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"location\":{\n" + " \"type\": \"geo_point\"\n" + " },\n" + " \"pic\":{\n" + " \"type\": \"keyword\",\n" + " \"index\": false\n" + " },\n" + " \"all\":{\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\"\n" + " }\n" + " }\n" + " }\n" + "}"; }
在hotel-demo中的 A_HotelIndexTest 测试类中,编写单元测试,实现创建索引:
//创建hotel索引库 @Test public void testCreateIndex() throws IOException { CreateIndexRequest request = new CreateIndexRequest("hotel") .source(HotelConstants.SOURCE, XContentType.JSON); client.indices().create(request, RequestOptions.DEFAULT); }
4.2.删除索引库
注意体现在Request对象上,依然是三步走:
-
1)创建Request对象。这次是DeleteIndexRequest对象
-
2)准备参数。这里是无参
-
3)发送请求。改用delete方法
在hotel-demo中的 A_HotelIndexTest 测试类中,编写单元测试,实现删除索引:
//删除hotel索引库 @Test public void testDeleteIndex() throws IOException { DeleteIndexRequest request = new DeleteIndexRequest("hotel"); client.indices().delete(request, RequestOptions.DEFAULT); }
判断索引库是否存在,本质就是查询。
依然是三步走:
-
1)创建Request对象。这次是GetIndexRequest对象
-
2)准备参数。这里是无参
-
3)发送请求。改用exists方法
//判断hotel索引库是否存在 @Test public void testExistsIndex() throws IOException { GetIndexRequest request = new GetIndexRequest("hotel"); boolean exists = client.indices().exists(request, RequestOptions.DEFAULT); System.out.println(exists); }
JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。
/* * 针对索引库的操作: * CreateIndexRequest * GetIndexRequest * DeleteIndexRequest */
索引库操作的基本步骤:
-
初始化RestHighLevelClient
-
创建XxxIndexRequest。XXX是Create、Get、Delete
-
准备DSL( Create时需要,其它是无参)
-
发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete
5.RestClient操作文档
为了与索引库操作分离,我们再次参加一个测试类,做两件事情:
-
初始化 RestHighLevelClient
-
我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
package cn.itcast.hotel; import cn.itcast.hotel.service.IHotelService; import org.apache.http.HttpHost; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.RestHighLevelClient; import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; import java.io.IOException; import java.util.List; /* * 针对文档的操作: * IndexRequest * GetRequest * DeleteRequest * UpdateRequest * BulkRequest */ @SpringBootTest public class B_HotelDocumentTest { private RestHighLevelClient client = new RestHighLevelClient( RestClient.builder(HttpHost.create("http://192.168.100.150:9200"))); @Autowired private IHotelService hotelService; @Test void testAddDocument() throws IOException { } }
5.1.新增文档
我们要将数据库的酒店数据查询出来,写入elasticsearch中。
5.1.1.索引库实体类
数据库查询后的结果是一个Hotel类型的对象。结构如下:
@Data @TableName("tb_hotel") public class Hotel { @TableId(type = IdType.INPUT) private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String longitude; private String latitude; private String pic; }
Hotel与我们的索引库结构存在差异,longitude和latitude需要合并为location,因此,我们需要定义一个新的类型,与索引库结构吻合.
package cn.itcast.hotel.pojo; import lombok.Data; import lombok.NoArgsConstructor; import java.util.ArrayList; import java.util.Collections; import java.util.List; @Data @NoArgsConstructor public class HotelDoc { private Long id; private String name; private String address; private Integer price; private Integer score; private String brand; private String city; private String starName; private String business; private String location; private String pic; private Object distance; // 排序时的距离值 private Boolean isAD; // 是否广告 private List<String> suggestion = new ArrayList<>(); // 自动补全建议字段 public HotelDoc(Hotel hotel) { this.id = hotel.getId(); this.name = hotel.getName(); this.address = hotel.getAddress(); this.price = hotel.getPrice(); this.score = hotel.getScore(); this.brand = hotel.getBrand(); this.city = hotel.getCity(); this.starName = hotel.getStarName(); this.business = hotel.getBusiness(); this.location = hotel.getLatitude() + ", " + hotel.getLongitude(); this.pic = hotel.getPic(); // 自动补全建议字段:添加品牌、城市、商圈信息。其中商圈可能包含"/"需要切分 this.suggestion.add(this.brand); this.suggestion.add(this.city); Collections.addAll(this.suggestion, this.business.split("/")); } }
5.1.2.语法说明
新增文档的DSL语句,对应的java代码如图:
可以看到与创建索引库类似,同样是三步走:
-
1)创建Request对象
-
2)准备请求参数,也就是DSL中的JSON文档
-
3)发送请求
变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。
5.1.3.完整代码
我们导入酒店数据,基本流程一致,但是需要考虑几点变化:
-
酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
-
hotel对象需要转为HotelDoc对象
-
HotelDoc需要序列化为json格式
在hotel-demo的 B_HotelDocumentTest 测试类中,编写单元测试:
//添加文档 @Test void testAddDocument() throws IOException { //1. 查询mysql数据库 Hotel hotel = hotelService.getById(61083L); //2. 将Hotel转为HotelDoc HotelDoc hotelDoc = new HotelDoc(hotel); //3. 将HotelDoc转为json字符串 String jsonString = JSON.toJSONString(hotelDoc); //4. 创建IndexRequest对象,添加json文档数据,指定id IndexRequest request = new IndexRequest("hotel") .id(hotelDoc.getId().toString()) .source(jsonString, XContentType.JSON); //5. 发送请求,添加文档数据 client.index(request, RequestOptions.DEFAULT); }
5.2.查询文档
5.2.1.语法说明
查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:
可以看到,结果是一个JSON,其中文档放在一个_source
属性中,因此解析就是拿到_source
,反序列化为Java对象即可。
与之前类似,也是三步走:
-
1)准备Request对象。这次是查询,所以是GetRequest
-
2)发送请求,得到结果。因为是查询,这里调用client.get()方法
-
3)解析结果,就是对JSON做反序列化
5.2.2.完整代码
在hotel-demo的 B_HotelDocumentTest 测试类中,编写单元测试:
//根据id获取文档数据,反序列到HotelDoc对象中 @Test void testGetDocumentById() throws IOException { GetRequest request = new GetRequest("hotel").id("61083"); GetResponse response = client.get(request, RequestOptions.DEFAULT); HotelDoc hotelDoc = JSON.parseObject(response.getSourceAsString(), HotelDoc.class); System.out.println(hotelDoc); }
5.3.删除文档
与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:
-
1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
-
2)准备参数,无参
-
3)发送请求。因为是删除,所以是client.delete()方法
在hotel-demo的 B_HotelDocumentTest 测试类中,编写单元测试:
//根据id删除文档 @Test void testDeleteDocumentById() throws IOException { DeleteRequest request = new DeleteRequest("hotel").id("61083"); client.delete(request, RequestOptions.DEFAULT); }
5.4.修改文档
5.4.1.语法说明
修改我们讲过两种方式:
-
全量修改:本质是先根据id删除,再新增
-
增量修改:修改文档中的指定字段值
在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:
-
如果新增时,ID已经存在,则修改
-
如果新增时,ID不存在,则新增
代码示例如图:
其实还是三步走:
-
1)创建Request对象。这里是BulkRequest
-
2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
-
3)发起请求。这里是批处理,调用的方法为client.bulk()方法
我们在导入酒店数据时,将上述代码改造成for循环处理即可。
5.5.2.完整代码
在hotel-demo的 B_HotelDocumentTest 测试类中,编写单元测试:
//批量添加文档,将mysql中的hotel数据同步到es中 @Test void testBulkRequest() throws IOException { List<Hotel> list = hotelService.list(); BulkRequest request = new BulkRequest(); for (Hotel hotel : list) { HotelDoc hotelDoc = new HotelDoc(hotel); String json = JSON.toJSONString(hotelDoc); request.add(new IndexRequest("hotel") .id(hotel.getId().toString()) .source(json, XContentType.JSON)); } client.bulk(request, RequestOptions.DEFAULT); }
5.6.小结
/* * 针对文档的操作: * IndexRequest * GetRequest * DeleteRequest * UpdateRequest * BulkRequest */
文档操作的基本步骤:
- 初始化RestHighLevelClient
- 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
- 准备参数(Index、Update、Bulk时需要)
- 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
- 解析结果(Get时需要)
