数据结构笔记-----图

图的定义




都是图,可以用来描述生活里的各种情况

社交网络应用







小结




图的存储结构

邻接矩阵法







代码:


<strong><span style="font-size:18px;">#ifndef _MGRAPH_H_
#define _MGRAPH_H_

typedef void MGraph;
typedef void MVertex;
typedef void (MGraph_Printf)(MVertex*);

MGraph* MGraph_Create(MVertex** v, int n);

void MGraph_Destroy(MGraph* graph);

void MGraph_Clear(MGraph* graph);

int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w);

int MGraph_RemoveEdge(MGraph* graph, int v1, int v2);

int MGraph_GetEdge(MGraph* graph, int v1, int v2);

int MGraph_TD(MGraph* graph, int v);

int MGraph_VertexCount(MGraph* graph);

int MGraph_EdgeCount(MGraph* graph);

void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc);

void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc);

void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc);

#endif</span></strong>


<strong><span style="font-size:18px;">#include <malloc.h>
#include <stdio.h>
#include "MGraph.h"
#include "LinkQueue.h"

typedef struct _tag_MGraph
{
    int count;
    MVertex** v;
    int** matrix;
} TMGraph;

static void recursive_dfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
{
    int i = 0;
    
    pFunc(graph->v[v]);
    
    visited[v] = 1;
    
    printf(", ");
    
    for(i=0; i<graph->count; i++)
    {
        if( (graph->matrix[v][i] != 0) && !visited[i] )
        {
            recursive_dfs(graph, i, visited, pFunc);
        }
    }
}

static void bfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
{
    LinkQueue* queue = LinkQueue_Create();
    
    if( queue != NULL )
    {
        LinkQueue_Append(queue, graph->v + v);
           //不可以在队列中加入值为0的元素
        visited[v] = 1;
        
        while( LinkQueue_Length(queue) > 0 )
        {
            int i = 0;
            
            v = (MVertex**)LinkQueue_Retrieve(queue) - graph->v;
            
            pFunc(graph->v[v]);
            
            printf(", ");
            
            for(i=0; i<graph->count; i++)
            {
                if( (graph->matrix[v][i] != 0) && !visited[i] )
                {
                    LinkQueue_Append(queue, graph->v + i);
                    
                    visited[i] = 1;
                }
            }
        }
    }
    
    LinkQueue_Destroy(queue);
}

MGraph* MGraph_Create(MVertex** v, int n)  // O(n)
{
    TMGraph* ret = NULL;
    
    if( (v != NULL ) && (n > 0) )
    {
        ret = (TMGraph*)malloc(sizeof(TMGraph));
        
        if( ret != NULL )
        {
            int* p = NULL;
            
            ret->count = n;
            
            ret->v = (MVertex**)malloc(sizeof(MVertex*) * n);
            //结点 
            ret->matrix = (int**)malloc(sizeof(int*) * n);
            //通过二级指针动态申请一维指针数组 
            p = (int*)calloc(n * n, sizeof(int));
            //通过一级指针申请数据空间 
            if( (ret->v != NULL) && (ret->matrix != NULL) && (p != NULL) )
            {
                int i = 0;
                
                for(i=0; i<n; i++)
                {
                    ret->v[i] = v[i];
                    ret->matrix[i] = p + i * n;
                    //将一维指针数组中的指针连接到数据空间 
                }
            }
            else
            {//异常处理 
                free(p);
                free(ret->matrix);
                free(ret->v);
                free(ret);
                
                ret = NULL;
            }
        }
    }
    
    return ret;
}

void MGraph_Destroy(MGraph* graph) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    
    if( tGraph != NULL )
    {
        free(tGraph->v);
        free(tGraph->matrix[0]);
        //释放首地址 
        free(tGraph->matrix);
        //释放一维数组 
        free(tGraph);
        //这几步不能乱 
    }
}

void MGraph_Clear(MGraph* graph) // O(n*n)
{
    TMGraph* tGraph = (TMGraph*)graph;
    
    if( tGraph != NULL )
    {
        int i = 0;
        int j = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<tGraph->count; j++)
            {
                tGraph->matrix[i][j] = 0;
            }
        }
    }
}

int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int ret = (tGraph != NULL);
    
    ret = ret && (0 <= v1) && (v1 < tGraph->count);
    ret = ret && (0 <= v2) && (v2 < tGraph->count);
    ret = ret && (0 <= w);
    
    if( ret )
    {
        tGraph->matrix[v1][v2] = w;
    }
    
    return ret;
}

int MGraph_RemoveEdge(MGraph* graph, int v1, int v2) // O(1)
{
    int ret = MGraph_GetEdge(graph, v1, v2);
    
    if( ret != 0 )
    {
        ((TMGraph*)graph)->matrix[v1][v2] = 0;
    }
    
    return ret;
}

int MGraph_GetEdge(MGraph* graph, int v1, int v2) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int condition = (tGraph != NULL);
    int ret = 0;
    
    condition = condition && (0 <= v1) && (v1 < tGraph->count);
    condition = condition && (0 <= v2) && (v2 < tGraph->count);
    
    if( condition )
    {
        ret = tGraph->matrix[v1][v2];
    }
    
    return ret;
}

int MGraph_TD(MGraph* graph, int v) // O(n) 度 
{
    TMGraph* tGraph = (TMGraph*)graph;
    int condition = (tGraph != NULL);
    int ret = 0;
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    
    if( condition )
    {
        int i = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            if( tGraph->matrix[v][i] != 0 )
            {
                ret++;
            }
            
            if( tGraph->matrix[i][v] != 0 )
            {
                ret++;
            }
        }
    }
    
    return ret;
}

int MGraph_VertexCount(MGraph* graph) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int ret = 0;
    
    if( tGraph != NULL )
    {
        ret = tGraph->count;
    }
    
    return ret;
}

int MGraph_EdgeCount(MGraph* graph) // O(n*n)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int ret = 0;
    
    if( tGraph != NULL )
    {
        int i = 0;
        int j = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<tGraph->count; j++)
            {
                if( tGraph->matrix[i][j] != 0 )
                {
                    ret++;
                }
            }
        }
    }
    
    return ret;
}

void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc)
{//深度优先遍历
    TMGraph* tGraph = (TMGraph*)graph;
    int* visited = NULL;
    int condition = (tGraph != NULL);
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    condition = condition && (pFunc != NULL);
    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
    
    if( condition )
    {
        int i = 0;
        
        recursive_dfs(tGraph, v, visited, pFunc);
        
        for(i=0; i<tGraph->count; i++)
        {
            if( !visited[i] )
            {
                recursive_dfs(tGraph, i, visited, pFunc);
            }
        }
        
        printf("\n");
    }
    
    free(visited);
}</span></strong>
<strong><span style="font-size:18px;">void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc)
{//广度优先遍历 
    TMGraph* tGraph = (TMGraph*)graph;
    int* visited = NULL;
    int condition = (tGraph != NULL);
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    condition = condition && (pFunc != NULL);
    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
    
    if( condition )
    {
        int i = 0;
        
        bfs(tGraph, v, visited, pFunc);
        
        for(i=0; i<tGraph->count; i++)
        {
            if( !visited[i] )
            {
                bfs(tGraph, i, visited, pFunc);
            }
        }
        
        printf("\n");
    }
    
    free(visited);
}

void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc) // O(n*n)
{         //MGraph_Display(graph, print_data);
    TMGraph* tGraph = (TMGraph*)graph;
    
    if( (tGraph != NULL) && (pFunc != NULL) )
    {
        int i = 0;
        int j = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            printf("%d:", i);
            pFunc(tGraph->v[i]);
            printf(" ");
        }
        
        printf("\n");
        
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<tGraph->count; j++)
            {
                if( tGraph->matrix[i][j] != 0 )
                {
                    printf("<");
                    pFunc(tGraph->v[i]);
                    //print_data
                    printf(", ");
                    pFunc(tGraph->v[j]);
                    printf(", %d", tGraph->matrix[i][j]);
                    printf(">");
                    printf(" ");
                }
            }
        }
        
        printf("\n");
    }
}
</span></strong>


<strong><span style="font-size:18px;">#include <stdio.h>
#include <stdlib.h>
#include "MGraph.h"

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

void print_data(MVertex* v)
{
    printf("%s", (char*)v);
}

int main(int argc, char *argv[])
{
    MVertex* v[] = {"A", "B", "C", "D", "E", "F"};
    MGraph* graph = MGraph_Create(v, 6);
    
    MGraph_AddEdge(graph, 0, 1, 1);
    MGraph_AddEdge(graph, 0, 2, 1);
    MGraph_AddEdge(graph, 0, 3, 1);
    MGraph_AddEdge(graph, 1, 5, 1);
    MGraph_AddEdge(graph, 1, 4, 1);
    MGraph_AddEdge(graph, 2, 1, 1);
    MGraph_AddEdge(graph, 3, 4, 1);
    MGraph_AddEdge(graph, 4, 2, 1);
    
    MGraph_Display(graph, print_data);
    
    MGraph_DFS(graph, 0, print_data);
    MGraph_BFS(graph, 0, print_data);
    
    MGraph_Destroy(graph);
    
	return 0;
}</span></strong>


图的遍历


深度优先遍历



广度优先遍历




代码

<strong><span style="font-size:18px;">#include <malloc.h>
#include <stdio.h>
#include "LGraph.h"
#include "LinkList.h"
#include "LinkQueue.h"

typedef struct _tag_LGraph
{
    int count;
    LVertex** v;
    LinkList** la;
} TLGraph;

typedef struct _tag_ListNode
{
    LinkListNode header;
    int v;
    int w;
} TListNode;

static void recursive_dfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc)
{
    int i = 0;
    
    pFunc(graph->v[v]);
    
    visited[v] = 1;
    
    printf(", ");
    
    for(i=0; i<LinkList_Length(graph->la[v]); i++)
    {
        TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);
        
        if( !visited[node->v] )
        {
            recursive_dfs(graph, node->v, visited, pFunc);
        }
    }
}

static void bfs(TLGraph* graph, int v, int visited[], LGraph_Printf* pFunc)
{
    LinkQueue* queue = LinkQueue_Create();
    
    if( queue != NULL )
    {
        LinkQueue_Append(queue, graph->v + v);
        
        visited[v] = 1;
        
        while( LinkQueue_Length(queue) > 0 )
        {
            int i = 0;
            
            v = (LVertex**)LinkQueue_Retrieve(queue) - graph->v;
            
            pFunc(graph->v[v]);
            
            printf(", ");
            
            for(i=0; i<LinkList_Length(graph->la[v]); i++)
            {
                TListNode* node = (TListNode*)LinkList_Get(graph->la[v], i);
                
                if( !visited[node->v] )
                {
                    LinkQueue_Append(queue, graph->v + node->v);
                    
                    visited[node->v] = 1;
                }
            }
        }
    }
    
    LinkQueue_Destroy(queue);
}

LGraph* LGraph_Create(LVertex** v, int n)  // O(n)
{
    TLGraph* ret = NULL;
    int ok = 1;
    
    if( (v != NULL ) && (n > 0) )
    {
        ret = (TLGraph*)malloc(sizeof(TLGraph));
        
        if( ret != NULL )
        {
            ret->count = n;
            
            ret->v = (LVertex**)calloc(n, sizeof(LVertex*));
            
            ret->la = (LinkList**)calloc(n, sizeof(LinkList*));
            
            ok = (ret->v != NULL) && (ret->la != NULL);
            
            if( ok )
            {
                int i = 0;
                
                for(i=0; i<n; i++)
                {
                    ret->v[i] = v[i];
                }
                
                for(i=0; (i<n) && ok; i++)
                {
                    ok = ok && ((ret->la[i] = LinkList_Create()) != NULL);
                }
            }
            
            if( !ok )
            {
                if( ret->la != NULL )
                {
                    int i = 0;
                    
                    for(i=0; i<n; i++)
                    {
                        LinkList_Destroy(ret->la[i]);
                    }
                }
                
                free(ret->la);
                free(ret->v);
                free(ret);
                
                ret = NULL;
            }
        }
    }
    
    return ret;
}

void LGraph_Destroy(LGraph* graph) // O(n*n)
{
    TLGraph* tGraph = (TLGraph*)graph;
    
    LGraph_Clear(tGraph);
    
    if( tGraph != NULL )
    {
        int i = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            LinkList_Destroy(tGraph->la[i]);
        }
        
        free(tGraph->la);
        free(tGraph->v);
        free(tGraph);
    }
}

void LGraph_Clear(LGraph* graph) // O(n*n)
{
    TLGraph* tGraph = (TLGraph*)graph;
    
    if( tGraph != NULL )
    {
        int i = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            while( LinkList_Length(tGraph->la[i]) > 0 )
            {
                free(LinkList_Delete(tGraph->la[i], 0));
            }
        }
    }
}

int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w) // O(1)
{
    TLGraph* tGraph = (TLGraph*)graph;
    TListNode* node = NULL;
    int ret = (tGraph != NULL);
    
    ret = ret && (0 <= v1) && (v1 < tGraph->count);
    ret = ret && (0 <= v2) && (v2 < tGraph->count);
    ret = ret && (0 < w) && ((node = (TListNode*)malloc(sizeof(TListNode))) != NULL);
    
    if( ret )
    {
       node->v = v2;
       node->w = w;
       
       LinkList_Insert(tGraph->la[v1], (LinkListNode*)node, 0);
    }
    
    return ret;
}

int LGraph_RemoveEdge(LGraph* graph, int v1, int v2) // O(n*n)
{
    TLGraph* tGraph = (TLGraph*)graph;
    int condition = (tGraph != NULL);
    int ret = 0;
    
    condition = condition && (0 <= v1) && (v1 < tGraph->count);
    condition = condition && (0 <= v2) && (v2 < tGraph->count);
    
    if( condition )
    {
        TListNode* node = NULL;
        int i = 0;
        
        for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)
        {
            node = (TListNode*)LinkList_Get(tGraph->la[v1], i);
            
            if( node->v == v2)
            {
                ret = node->w;
                
                LinkList_Delete(tGraph->la[v1], i);
                
                free(node);
                
                break;
            }
        }
    }
    
    return ret;
}

int LGraph_GetEdge(LGraph* graph, int v1, int v2) // O(n*n)
{
    TLGraph* tGraph = (TLGraph*)graph;
    int condition = (tGraph != NULL);
    int ret = 0;
    
    condition = condition && (0 <= v1) && (v1 < tGraph->count);
    condition = condition && (0 <= v2) && (v2 < tGraph->count);
    
    if( condition )
    {
        TListNode* node = NULL;
        int i = 0;
        
        for(i=0; i<LinkList_Length(tGraph->la[v1]); i++)
        {
            node = (TListNode*)LinkList_Get(tGraph->la[v1], i);
            
            if( node->v == v2)
            {
                ret = node->w;
                
                break;
            }
        }
    }
    
    return ret;
}

int LGraph_TD(LGraph* graph, int v) // O(n*n*n)
{
    TLGraph* tGraph = (TLGraph*)graph;
    int condition = (tGraph != NULL);
    int ret = 0;
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    
    if( condition )
    {
        int i = 0;
        int j = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<LinkList_Length(tGraph->la[i]); j++)
            {
                TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);
                
                if( node->v == v )
                {
                    ret++;
                }
            }
        }
        
        ret += LinkList_Length(tGraph->la[v]);
    }
    
    return ret;
}

int LGraph_VertexCount(LGraph* graph) // O(1)
{
    TLGraph* tGraph = (TLGraph*)graph;
    int ret = 0;
    
    if( tGraph != NULL )
    {
        ret = tGraph->count;
    }
    
    return ret;
}

int LGraph_EdgeCount(LGraph* graph) // O(n)
{
    TLGraph* tGraph = (TLGraph*)graph;
    int ret = 0;
    
    if( tGraph != NULL )
    {
        int i = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            ret += LinkList_Length(tGraph->la[i]);
        }
    }
    
    return ret;
}

void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc)
{
    TLGraph* tGraph = (TLGraph*)graph;
    int* visited = NULL;
    int condition = (tGraph != NULL);
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    condition = condition && (pFunc != NULL);
    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
    
    if( condition )
    {
        int i = 0;
        
        recursive_dfs(tGraph, v, visited, pFunc);
        
        for(i=0; i<tGraph->count; i++)
        {
            if( !visited[i] )
            {
                recursive_dfs(tGraph, i, visited, pFunc);
            }
        }
        
        printf("\n");
    }
    
    free(visited);
}

void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc)
{//借助队列实现 
    TLGraph* tGraph = (TLGraph*)graph;
    int* visited = NULL;
    int condition = (tGraph != NULL);
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    condition = condition && (pFunc != NULL);
    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
    
    if( condition )
    {
        int i = 0;
        
        bfs(tGraph, v, visited, pFunc);
        
        for(i=0; i<tGraph->count; i++)
        {
            if( !visited[i] )
            {
                bfs(tGraph, i, visited, pFunc);
            }
        }
        
        printf("\n");
    }
    
    free(visited);
}

void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc) // O(n*n*n)
{
    TLGraph* tGraph = (TLGraph*)graph;
    
    if( (tGraph != NULL) && (pFunc != NULL) )
    {
        int i = 0;
        int j = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            printf("%d:", i);
            pFunc(tGraph->v[i]);
            printf(" ");
        }
        
        printf("\n");
        
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<LinkList_Length(tGraph->la[i]); j++)
            {
                TListNode* node = (TListNode*)LinkList_Get(tGraph->la[i], j);
                
                printf("<");
                pFunc(tGraph->v[i]);
                printf(", ");
                pFunc(tGraph->v[node->v]);
                printf(", %d", node->w);
                printf(">");
                printf(" ");               
            }
        }
        
        printf("\n");
    }
}
</span></strong>

<strong><span style="font-size:18px;">#ifndef _LGRAPH_H_
#define _LGRAPH_H_

typedef void LGraph;
typedef void LVertex;
typedef void (LGraph_Printf)(LVertex*);

LGraph* LGraph_Create(LVertex** v, int n);

void LGraph_Destroy(LGraph* graph);

void LGraph_Clear(LGraph* graph);

int LGraph_AddEdge(LGraph* graph, int v1, int v2, int w);

int LGraph_RemoveEdge(LGraph* graph, int v1, int v2);

int LGraph_GetEdge(LGraph* graph, int v1, int v2);

int LGraph_TD(LGraph* graph, int v);

int LGraph_VertexCount(LGraph* graph);

int LGraph_EdgeCount(LGraph* graph);

void LGraph_DFS(LGraph* graph, int v, LGraph_Printf* pFunc);

void LGraph_BFS(LGraph* graph, int v, LGraph_Printf* pFunc);

void LGraph_Display(LGraph* graph, LGraph_Printf* pFunc);

#endif</span></strong>

<strong><span style="font-size:18px;">#include <stdio.h>
#include <stdlib.h>
#include "LGraph.h"

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

void print_data(LVertex* v)
{
    printf("%s", (char*)v);
}

int main(int argc, char *argv[])
{
    LVertex* v[] = {"A", "B", "C", "D", "E", "F"};
    LGraph* graph = LGraph_Create(v, 6);
    
    LGraph_AddEdge(graph, 0, 1, 1);
    LGraph_AddEdge(graph, 0, 2, 1);
    LGraph_AddEdge(graph, 0, 3, 1);
    LGraph_AddEdge(graph, 1, 5, 1);
    LGraph_AddEdge(graph, 1, 4, 1);
    LGraph_AddEdge(graph, 2, 1, 1);
    LGraph_AddEdge(graph, 3, 4, 1);
    LGraph_AddEdge(graph, 4, 2, 1);
    
    LGraph_Display(graph, print_data);
    
    LGraph_DFS(graph, 0, print_data);
    LGraph_BFS(graph, 0, print_data);
    
    LGraph_Destroy(graph);
    
	return 0;
}</span></strong>

邻接矩阵法实现在上面图的存储结构代码


小结

广度优先遍历与深度优先遍历是图结构的基础算法,也是其他图算法的基础。


思考:

借助栈数据结构


最小连通网

运营商的挑战


备选方案




Prim算法



代码


Prim.c

<strong><span style="font-size:18px;">#include <stdio.h>
#include <stdlib.h>

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

#define VNUM 9
#define MV 65536

int P[VNUM];//结点 
int Cost[VNUM];//边的耗费 
int Mark[VNUM];
int Matrix[VNUM][VNUM] =
{
    {0, 10, MV, MV, MV, 11, MV, MV, MV},
    {10, 0, 18, MV, MV, MV, 16, MV, 12},
    {MV, 18, 0, 22, MV, MV, MV, MV, 8},
    {MV, MV, 22, 0, 20, MV, MV, 16, 21},
    {MV, MV, MV, 20, 0, 26, MV, 7, MV},
    {11, MV, MV, MV, 26, 0, 17, MV, MV},
    {MV, 16, MV, MV, MV, 17, 0, 19, MV},
    {MV, MV, MV, 16, 7, MV, 19, 0, MV},
    {MV, 12, 8, 21, MV, MV, MV, MV, 0},
};

void Prim(int sv) // O(n*n)
{
    int i = 0;
    int j = 0;
    
    if( (0 <= sv) && (sv < VNUM) )
    {
        for(i=0; i<VNUM; i++)
        {
            Cost[i] = Matrix[sv][i];
            P[i] = sv;
            Mark[i] = 0;
        }
        
        Mark[sv] = 1;
        
        for(i=0; i<VNUM; i++)
        {
            int min = MV;
            int index = -1;
            
            for(j=0; j<VNUM; j++)
            {
                if( !Mark[j] && (Cost[j] < min) )
                {
                    min = Cost[j];
                    index = j;
                }
            }
            
            if( index > -1 )
            {
                Mark[index] = 1;
                
                printf("(%d, %d, %d)\n", P[index], index, Cost[index]);
            }
            
            for(j=0; j<VNUM; j++)
            {//以index为结点查找最小权值 
                if( !Mark[j] && (Matrix[index][j] < Cost[j]) )
                {
                    Cost[j]  = Matrix[index][j];
                    P[j] = index;
                }
            }
        }
    }
}

int main(int argc, char *argv[]) 
{
    Prim(0);
    
	return 0;
}</span></strong>


Kruskal算法






小结





最短路径



解决步骤描述



算法精髓




代码  类似Prim

Dijkstra.c


<strong><span style="font-size:18px;">#include <stdio.h>
#include <stdlib.h>

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

#define VNUM 5
#define MV 65536

int P[VNUM];
int Dist[VNUM];
int Mark[VNUM];
int Matrix[VNUM][VNUM] =
{
    {0, 10, MV, 30, 100},
    {MV, 0, 50, MV, MV},
    {MV, MV, 0, MV, 10},
    {MV, MV, 20, 0, 60},
    {MV, MV, MV, MV, 0},
};

void Dijkstra(int sv) // O(n*n)
{
    int i = 0;
    int j = 0;
    
    if( (0 <= sv) && (sv < VNUM) )
    {
        for(i=0; i<VNUM; i++)
        {
            Dist[i] = Matrix[sv][i];
            P[i] = sv;
            Mark[i] = 0;
        }
        
        Mark[sv] = 1;
        
        for(i=0; i<VNUM; i++)
        {
            int min = MV;
            int index = -1;
            
            for(j=0; j<VNUM; j++)
            {
                if( !Mark[j] && (Dist[j] < min) )
                {
                    min = Dist[j];
                    index = j;
                }
            }
            
            if( index > -1 )
            {
                Mark[index] = 1;
            }
            
            for(j=0; j<VNUM; j++)
            {
                if( !Mark[j] && (min + Matrix[index][j] < Dist[j]) )
                {
                    Dist[j] = min + Matrix[index][j];
                    P[j] = index;
                }
            }
        }
        
        for(i=0; i<VNUM; i++)
        {
            int p = i;
            
            printf("%d -> %d: %d\n", sv, p, Dist[p]);
            
            do
            {
                printf("%d <- ", p);
                p = P[p];
            } while( p != sv );
            
            printf("%d\n", p);
        }
    }
}

int main(int argc, char *argv[]) 
{
    Dijkstra(0);

	return 0;
}
</span></strong>




A矩阵的意义


代码

Floyd.c


#include <stdio.h>
#include <stdlib.h>

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

#define VNUM 5
#define MV 65536

int P[VNUM][VNUM];
int A[VNUM][VNUM];
int Matrix[VNUM][VNUM] =
{
    {0, 10, MV, 30, 100},
    {MV, 0, 50, MV, MV},
    {MV, MV, 0, MV, 10},
    {MV, MV, 20, 0, 60},
    {MV, MV, MV, MV, 0},
};

void Floyd() // O(n*n*n)
{
    int i = 0;
    int j = 0;
    int k = 0;
    
    for(i=0; i<VNUM; i++)
    {
        for(j=0; j<VNUM; j++)
        {
            A[i][j] = Matrix[i][j];
            P[i][j] = j;
            //保存正序的第二个顶点 
        }
    }
    
    for(i=0; i<VNUM; i++)
    {
        for(j=0; j<VNUM; j++)
        {
            for(k=0; k<VNUM; k++)
            {
                if( (A[j][i] + A[i][k]) < A[j][k] )
                {
                    A[j][k] = A[j][i] + A[i][k];
                    P[j][k] = P[j][i];
                 //通过中转 
                }
            }
        }
    }
    
    for(i=0; i<VNUM; i++)
    {
        for(j=0; j<VNUM; j++)
        {
            int p = -1;
            
            printf("%d -> %d: %d\n", i, j, A[i][j]);
            
            printf("%d", i);
            
            p = i;
            
            do
            {
                p = P[p][j];
                
                printf(" -> %d", p);
            } while( p != j);
            
            printf("\n");
        }
    }
}

int main(int argc, char *argv[]) 
{
    Floyd();
    
	return 0;
}



小结




思考:



































posted @ 2016-03-19 16:37  伴我前行  阅读(202)  评论(0编辑  收藏  举报