三角函数整合
角度值和弧度制
\(1rad\approx 57.3^{\circ},\pi=180^{\circ}.\)
\(\theta=\dfrac{l}{r},S=\dfrac{1}{2}\alpha r^2=\dfrac12lr.\)
三角函数定义
对于坐标系上一点 \(P(x,y)\),\(OP\) 与 \(x\) 轴的夹角为 \(\theta\),则:
特殊的,对于单位圆,\(P\) 的坐标为 \((\cos\theta,\sin\theta)\)。
同角三角函数
诱导公式
- \(\sin(2\pi+\alpha)=\sin\alpha\\\cos(2\pi+\alpha)=\cos\alpha\\\tan(2\pi+\alpha)=\tan\alpha\)
- \(\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\\\tan(\pi+\alpha)=\tan\alpha\)
- \(\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\\\tan(-\alpha)=-\tan\alpha\)
- \(\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\\\tan(\pi-\alpha)=-\tan\alpha\)
- \(\sin(\dfrac\pi2-\alpha)=\cos\alpha\\\cos(\dfrac\pi2-\alpha)=\sin\alpha\)
- \(\sin(\dfrac\pi2+\alpha)=\cos\alpha\\\cos(\dfrac\pi2+\alpha)=-\sin\alpha\)
两角和差公式
\(\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta\)
\(\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
\(\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)
\(\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta\)
\(\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\)
\(\tan(\alpha-\beta)=\dfrac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}\)
辅助角公式
积化和差/和差化积
\(\sin \alpha \cos \beta =\dfrac{1}{2} \left[\sin (\alpha +\beta )+\sin (\alpha -\beta )\right ]\)
\(\cos \alpha \sin \beta =\dfrac{1}{2} \left[\sin (\alpha +\beta )-\sin (\alpha -\beta )\right ]\)
\(\cos \alpha \cos \beta =\dfrac{1}{2} \left[\cos (\alpha +\beta )+\cos (\alpha -\beta )\right ]\)
\(\sin \alpha \sin \beta =-\dfrac{1}{2} \left[\cos (\alpha +\beta )-\cos (\alpha -\beta )\right ]\)
令 $\theta =\alpha +\beta ,\varphi=\alpha -\beta $,得:
$\sin \theta +\sin \varphi =2\sin \dfrac{\theta +\varphi }{2} \sin \dfrac{\theta -\varphi}{2} $
$\sin \theta -\sin \varphi =2\cos \dfrac{\theta +\varphi }{2} \sin \dfrac{\theta -\varphi}{2} $
$\cos \theta +\cos \varphi =2\cos \dfrac{\theta +\varphi }{2} \cos \dfrac{\theta -\varphi}{2} $
$\cos \theta -\cos \varphi =-2\sin \dfrac{\theta +\varphi }{2} \sin \dfrac{\theta -\varphi}{2} $
倍/半角公式(升/降幂公式)
倍角和高幂不可兼得。
$\sin 2\alpha =2\sin \alpha \cos \alpha $
\(\begin{array}{ll} \cos 2\alpha &=\cos ^2\alpha -\sin ^2\alpha \\ &=1-2\sin ^2\alpha \\ &=2\cos ^2\alpha -1 \end{array}\)
$\tan 2\alpha =\dfrac{2\tan \alpha }{1-\tan ^2\alpha } $
$\sin ^2\alpha =\dfrac{1-\cos 2\alpha }{2} $
$\cos ^2\alpha =\dfrac{1+\cos 2\alpha }{2} $
$\tan \alpha =\dfrac{\sin 2\alpha }{1+\cos 2\alpha }=\dfrac{1-\cos 2\alpha }{\sin 2\alpha } $
解三角形
正弦定理:
\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B}= \dfrac{c}{\sin C} =2R\)
余弦定理:
\(a^2=b^2+c^2-2bc\cos A\)
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)
面积公式:
\(S=\dfrac{1}{2} ab\sin C\)
\(S=\sqrt{p(p-a)(p-b)(p-c)},p=\dfrac{1}{2}(a+b+c)\)
射影定理:
\(a=b\cos C+c\cos B\)
角平分线定理(\(AD\) 为 \(\Delta ABC\;A\) 的角平分线):
\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)
角平分线等面积推论:
\(2bc\cos\dfrac{A}{2}=AD(b+c)\)
万能公式(万能弦化切)
$\sin \theta =\dfrac{2\tan \frac{\theta }{2} }{1+\tan ^2\frac{\theta }{2} } $
$\tan\theta =\dfrac{2\tan \frac{\theta }{2} }{1-\tan ^2\frac{\theta }{2} } $
$\cos \theta =\dfrac{1-\tan ^2\frac{\theta }{2} } {1+\tan ^2\frac{\theta }{2} } $
不常用技巧
-
正切恒等式
若 \(A+B+C=n\pi\),则 \(\tan A\cdot \tan B\cdot \tan C=\tan A+\tan B+\tan C\)
一般在三角形中出现。
-
三倍角公式
\(\sin 3\alpha =3\sin \alpha -4\sin ^3\alpha\)
\(\cos 3\alpha =-3\cos \alpha +4\cos ^3\alpha\)
一般用于三角换元。