三角函数整合

角度值和弧度制

\(1rad\approx 57.3^{\circ},\pi=180^{\circ}.\)

\(\theta=\dfrac{l}{r},S=\dfrac{1}{2}\alpha r^2=\dfrac12lr.\)

三角函数定义

对于坐标系上一点 \(P(x,y)\)\(OP\)\(x\) 轴的夹角为 \(\theta\),则:

\[\sin \theta =\dfrac{y}{r},\cos \theta =\dfrac{x}{r},\tan \theta =\dfrac{y}{x} \]

特殊的,对于单位圆,\(P\) 的坐标为 \((\cos\theta,\sin\theta)\)

同角三角函数

\[\sin^2\theta+\cos^2\theta=1 \]

\[\dfrac{\sin\theta}{\cos\theta}=\tan\theta \]

诱导公式

  1. \(\sin(2\pi+\alpha)=\sin\alpha\\\cos(2\pi+\alpha)=\cos\alpha\\\tan(2\pi+\alpha)=\tan\alpha\)
  2. \(\sin(\pi+\alpha)=-\sin\alpha\\\cos(\pi+\alpha)=-\cos\alpha\\\tan(\pi+\alpha)=\tan\alpha\)
  3. \(\sin(-\alpha)=-\sin\alpha\\\cos(-\alpha)=\cos\alpha\\\tan(-\alpha)=-\tan\alpha\)
  4. \(\sin(\pi-\alpha)=\sin\alpha\\\cos(\pi-\alpha)=-\cos\alpha\\\tan(\pi-\alpha)=-\tan\alpha\)
  5. \(\sin(\dfrac\pi2-\alpha)=\cos\alpha\\\cos(\dfrac\pi2-\alpha)=\sin\alpha\)
  6. \(\sin(\dfrac\pi2+\alpha)=\cos\alpha\\\cos(\dfrac\pi2+\alpha)=-\sin\alpha\)

两角和差公式

\(\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta\)

\(\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)

\(\sin(\alpha+\beta)=\sin\alpha\cos\beta+\cos\alpha\sin\beta\)

\(\sin(\alpha-\beta)=\sin\alpha\cos\beta-\cos\alpha\sin\beta\)

\(\tan(\alpha+\beta)=\dfrac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\)

\(\tan(\alpha-\beta)=\dfrac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}\)

辅助角公式

\[\begin{array}{ll} a\sin x+b\cos x &=\sqrt{a^2+b^2}(\dfrac{a}{\sqrt{a^2+b^2}}\sin x+\dfrac{b}{\sqrt{a^2+b^2}}\cos x)\\ &=\sqrt{a^2+b^2}(\sin x\cos\varphi+\cos x\sin\varphi)\\ &=\sqrt{a^2+b^2}\sin(x+\varphi) \end{array}\]

积化和差/和差化积

\(\sin \alpha \cos \beta =\dfrac{1}{2} \left[\sin (\alpha +\beta )+\sin (\alpha -\beta )\right ]\)

\(\cos \alpha \sin \beta =\dfrac{1}{2} \left[\sin (\alpha +\beta )-\sin (\alpha -\beta )\right ]\)

\(\cos \alpha \cos \beta =\dfrac{1}{2} \left[\cos (\alpha +\beta )+\cos (\alpha -\beta )\right ]\)

\(\sin \alpha \sin \beta =-\dfrac{1}{2} \left[\cos (\alpha +\beta )-\cos (\alpha -\beta )\right ]\)

令 $\theta =\alpha +\beta ,\varphi=\alpha -\beta $,得:

$\sin \theta +\sin \varphi =2\sin \dfrac{\theta +\varphi }{2} \sin \dfrac{\theta -\varphi}{2} $

$\sin \theta -\sin \varphi =2\cos \dfrac{\theta +\varphi }{2} \sin \dfrac{\theta -\varphi}{2} $

$\cos \theta +\cos \varphi =2\cos \dfrac{\theta +\varphi }{2} \cos \dfrac{\theta -\varphi}{2} $

$\cos \theta -\cos \varphi =-2\sin \dfrac{\theta +\varphi }{2} \sin \dfrac{\theta -\varphi}{2} $

倍/半角公式(升/降幂公式)

倍角和高幂不可兼得。

$\sin 2\alpha =2\sin \alpha \cos \alpha $

\(\begin{array}{ll} \cos 2\alpha &=\cos ^2\alpha -\sin ^2\alpha \\ &=1-2\sin ^2\alpha \\ &=2\cos ^2\alpha -1 \end{array}\)

$\tan 2\alpha =\dfrac{2\tan \alpha }{1-\tan ^2\alpha } $

$\sin ^2\alpha =\dfrac{1-\cos 2\alpha }{2} $

$\cos ^2\alpha =\dfrac{1+\cos 2\alpha }{2} $

$\tan \alpha =\dfrac{\sin 2\alpha }{1+\cos 2\alpha }=\dfrac{1-\cos 2\alpha }{\sin 2\alpha } $

解三角形

正弦定理:

\(\dfrac{a}{\sin A}= \dfrac{b}{\sin B}= \dfrac{c}{\sin C} =2R\)

余弦定理:

\(a^2=b^2+c^2-2bc\cos A\)

\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)

面积公式:

\(S=\dfrac{1}{2} ab\sin C\)

\(S=\sqrt{p(p-a)(p-b)(p-c)},p=\dfrac{1}{2}(a+b+c)\)

射影定理:

\(a=b\cos C+c\cos B\)

角平分线定理(\(AD\)\(\Delta ABC\;A\) 的角平分线):

\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

角平分线等面积推论:

\(2bc\cos\dfrac{A}{2}=AD(b+c)\)

万能公式(万能弦化切)

$\sin \theta =\dfrac{2\tan \frac{\theta }{2} }{1+\tan ^2\frac{\theta }{2} } $

$\tan\theta =\dfrac{2\tan \frac{\theta }{2} }{1-\tan ^2\frac{\theta }{2} } $

$\cos \theta =\dfrac{1-\tan ^2\frac{\theta }{2} } {1+\tan ^2\frac{\theta }{2} } $

不常用技巧

  1. 正切恒等式

    \(A+B+C=n\pi\),则 \(\tan A\cdot \tan B\cdot \tan C=\tan A+\tan B+\tan C\)

    一般在三角形中出现。

  2. 三倍角公式

    \(\sin 3\alpha =3\sin \alpha -4\sin ^3\alpha\)

    \(\cos 3\alpha =-3\cos \alpha +4\cos ^3\alpha\)

    一般用于三角换元。

posted @ 2022-10-31 14:32  Zvelig1205  阅读(163)  评论(0编辑  收藏  举报