Fhq_Treap 和 Splay:谁才是序列之王?
平衡树
很久以前,我立志要学习所有的平衡树,然后把每个树的学习笔记都整理到相关博客中。
而如今……
今年欢笑复明年,不知退役在眼前。
在阅读本文之前建议先学习二叉搜索树相关内容。
相关题单。
Fhq_Treap
原来 Treap 是一种旋转类的平衡树(即树堆),然后由防火墙范浩强神犇发明了一种不需要旋转的 Treap,凭借其短小的代码而不失精悍的功能(区间操作和可持久化)博得众人喜爱。
比起“普通平衡树”、“文艺平衡树”这种叫法,我更喜欢叫其“权值树”、“区间树”。
基本概念与储存
众所周知,BST 在极端数据(顺序插入单调值)时会退化成链,深度为 ;而 heap 是一种完全二叉树,深度总是维持在 。
Treap 是将 BST 和 heap 结合在一起的数据结构(Treap=Tree+heap),使得整棵树的深度大致维护在 左右。
不过,根据 BST 和 heap 的性质,这两个数据结构好像是冲突的,那要如何结合在一起呢?
毕竟 heap 是辅助 BST 的工具,所以,对 BST 的每个节点赋一个值 pri
,使得 val
满足 BST 性质,pri
满足 heap 性质。
也就是这样:
struct Fhq_Treap{ int lc,rc; int siz,val,pri; }T[inf];
而这个 pri
值,随机就好。
不要不相信随机数,它可是很好用的!
可以理解为将原来的插入序列随机打乱,这样树的深度就维持在 级别了。
图示:
实现权值平衡树
了解了 Treap 的基本概念,接下来就是 Fhq_Treap 的两个 最最最重要 的操作:分裂(split)和合并(merge)。
为什么说最最最重要?因为这两个操作插入要用到,删除要用到,查询排名、k 小值、前驱后继都要用到。
分裂-split
分裂操作包含两类:按值分裂和按大小分裂。
第二种分裂方式会在下边的区间平衡树中提到。权值树中,用到的分裂方式为第一种。
split
函数包含四个参数:将原树 按照 分裂为 两棵树,其中 树中的 val
均 , 树中的 val
均 。
由于 val
满足 BST 性质,每找到一个节点,若当前节点的 val
,那么其左子树的 val
均 ,就将当前节点和左子树从 上拆下来,拼到 树上去;否则,其右子树的 val
均 ,将当前节点和右子树从 上拆下来,拼到 树上去。
图示:
函数实现:
void split(int i,int k,int &x,int &y) { if(!i){x=y=0;return;} if(T[i].val<=k) x=i,split(T[i].rc,k,T[i].rc,y); else y=i,split(T[i].lc,k,x,T[i].lc); pushup(i); }
合并-merge
为了方便实现,我们保证 的 val
均比 的 val
小。
那么合并的时候也就只需要比较两个节点的 pri
了。
既然 val
确定了,合并之后的情况就只有两种:
区别就是选择大根堆还是小根堆。
通过比较,就可以确定是将 的右子树与 合并还是将 与 的左子树合并。
至于具体的比较方案,两种应该是都可以的,毕竟堆性质的维护不会影响 BST 的性质。
但就在某天(2022 年 10 月 1 日),发生了一个玄学错误,至今未得解,可以看看这个帖子。
图示(这个图有两处错误,但可以更了解基本思想):
int merge(int x,int y) { if(!x||!y)return x|y; if(T[x].pri<T[y].pri) { T[x].rc=merge(T[x].rc,y); pushup(x);return x; } else { T[y].lc=merge(x,T[y].lc); pushup(y);return y; } }
其他操作
接下来,你将明白,什么叫短小精悍!
1. pushup
上边两段代码中都有 pushup
操作。和 BST 相同,在权值树中,pushup
的功能就是统计以当前节点为根的子树大小。
void pushup(int i) { T[i].siz=T[T[i].lc].siz+T[T[i].rc].siz+1; }
2. new_ k
新建一个 val
为 k
的节点。
#include<random> mt19937 rnd(51205); int new_(int k) { T[++cnt].pri=rnd(); T[cnt].siz=1;T[cnt].val=k; return cnt; }
mt19937 是一种神奇的随机数生成器,想深入了解的可以查阅这篇日报。
而 51205 是对我有重要意义的一个数字。
3. insert k
将原树按 分裂,然后新建一个节点(看做一棵新的树),将三棵树合并即可。
void insert(int k) { split(rot,k,rx,ry); rot=merge(merge(rx,new_(k)),ry); }
为了防止变量名冲突,我将原树树根记作 ,所用到的临时分裂出的树的树根分别记作 ,而且保证点权关系为 。
4. remove k
先将 按 分裂成 两树,然后将 按 分裂为 两树。这样下来, 上的点的点权均为 (如果有的话)。如果将所有 均删除,则直接合并 即可,否则先将 的左右子树合并,然后再将 合并即可。
void remove(int k) { split(rot,k,rx,rz); split(rx,k-1,rx,ry); ry=merge(T[ry].lc,T[ry].rc); rot=merge(merge(rx,ry),rz); }
5. ask_kth
这应该是唯一一个和旋转类平衡树一样的操作了。
但由于某些情况下不只要查询整棵树的 小值,所以参数有两个。
int kth(int i,int k) { while(1) { if(k==T[T[i].lc].siz+1)return T[i].val; if(k<=T[T[i].lc].siz)i=T[i].lc; else k-=T[T[i].lc].siz+1,i=T[i].rc; } }
6. ask_rank k
将 按 分裂为 两棵树,那么 的排名就是 的 。
void ask_rank(int k) { split(rot,k-1,rx,ry); wr(T[rx].siz+1),putchar('\n'); rot=merge(rx,ry); }
7. ask_pre/ask_nex k
本质上这两个操作是一样的,此处归为一类。
前驱:先将 按照 分裂为 两棵树,然后 中的最大值即为 的前驱。
后继:先将 按照 分裂为 两棵树,然后 中的最小值即为 的后继。
void ask_pre(int k) { split(rot,k-1,rx,ry); wr(kth(rx,T[rx].siz)),putchar('\n'); rot=merge(rx,ry); } void ask_nex(int k) { split(rot,k,rx,ry); wr(kth(ry,1)),putchar('\n'); rot=merge(rx,ry); }
完整代码
const int inf=1e5+7; int n,op,k; struct Fhq_Treap{ int lc,rc; int val,siz; unsigned pri; }T[inf]; int cnt,rot,rx,ry,rz; #include<random> mt19937 rnd(51205); int new_(int k) { T[++cnt].pri=rnd(); T[cnt].siz=1,T[cnt].val=k; return cnt; } void pushup(int i) { T[i].siz=T[T[i].lc].siz+T[T[i].rc].siz+1; } void split(int i,int k,int &x,int &y) { if(!i){x=y=0;return;} if(T[i].val<=k) x=i,split(T[i].rc,k,T[i].rc,y); else y=i,split(T[i].lc,k,x,T[i].lc); pushup(i); } int merge(int x,int y) { if(!x||!y)return x|y; if(T[x].pri<T[y].pri) { T[x].rc=merge(T[x].rc,y); pushup(x);return x; } else { T[y].lc=merge(x,T[y].lc); pushup(y);return y; } } int kth(int i,int k) { while(1) { if(k==T[T[i].lc].siz+1)return T[i].val; if(k<=T[T[i].lc].siz)i=T[i].lc; else k-=T[T[i].lc].siz+1,i=T[i].rc; } } void insert(int k) { split(rot,k,rx,ry); rot=merge(merge(rx,new_(k)),ry); } void remove(int k) { split(rot,k,rx,rz); split(rx,k-1,rx,ry); ry=merge(T[ry].lc,T[ry].rc); rot=merge(merge(rx,ry),rz); } void ask_rank(int k) { split(rot,k-1,rx,ry); wr(T[rx].siz+1),putchar('\n'); rot=merge(rx,ry); } void ask_kth(int k) { wr(kth(rot,k)),putchar('\n'); } void ask_pre(int k) { split(rot,k-1,rx,ry); wr(kth(rx,T[rx].siz)),putchar('\n'); rot=merge(rx,ry); } void ask_nex(int k) { split(rot,k,rx,ry); wr(kth(ry,1)),putchar('\n'); rot=merge(rx,ry); } int main() { n=re(); for(int i=1;i<=n;i++) { op=re(),k=re(); if(op==1)insert(k); if(op==2)remove(k); if(op==3)ask_rank(k); if(op==4)ask_kth(k); if(op==5)ask_pre(k); if(op==6)ask_nex(k); } return 0; }
指针版实现
int n; struct Fhq_Treap{ int siz,val;unsigned pri; Fhq_Treap *lc,*rc; Fhq_Treap(){} Fhq_Treap(int siz,int val,unsigned pri,Fhq_Treap* lc,Fhq_Treap* rc): siz(siz),val(val),pri(pri),lc(lc),rc(rc){} }*rot,*nul,*rx,*ry,*rz; #include<random> mt19937 rnd(51205); Fhq_Treap* new_(int k) { return new Fhq_Treap(1,k,rnd(),nul,nul); } void pushup(Fhq_Treap* &i){i->siz=i->lc->siz+i->rc->siz+1;} void split(Fhq_Treap* i,int k,Fhq_Treap* &x,Fhq_Treap* &y) { if(i==nul){x=y=nul;return;} if(i->val<=k) x=i,split(i->rc,k,i->rc,y); else y=i,split(i->lc,k,x,i->lc); pushup(i); } Fhq_Treap* merge(Fhq_Treap* x,Fhq_Treap* y) { if(x==nul)return y; if(y==nul)return x; if(x->pri<y->pri) { x->rc=merge(x->rc,y); pushup(x);return x; } else { y->lc=merge(x,y->lc); pushup(y);return y; } } int kth(Fhq_Treap* i,int k) { Fhq_Treap* now=i; while(1) { if(k==now->lc->siz+1)return now->val; if(k<=now->lc->siz)now=now->lc; else k-=now->lc->siz+1,now=now->rc; } } int main() { n=re(); nul=new Fhq_Treap(0,0,0,0,0); rot=rx=ry=rz=nul; while(n--) { int op=re(),k=re(); if(op==1) { split(rot,k,rx,ry); rot=merge(merge(rx,new_(k)),ry); } if(op==2) { split(rot,k,rx,rz); split(rx,k-1,rx,ry); ry=merge(ry->lc,ry->rc); rot=merge(merge(rx,ry),rz); } if(op==3) { split(rot,k-1,rx,ry); wr(rx->siz+1),putchar('\n'); rot=merge(rx,ry); } if(op==4)wr(kth(rot,k)),putchar('\n'); if(op==5) { split(rot,k-1,rx,ry); wr(kth(rx,rx->siz)),putchar('\n'); rot=merge(rx,ry); } if(op==6) { split(rot,k,rx,ry); wr(kth(ry,1)),putchar('\n'); rot=merge(rx,ry); } } return 0; }
实现区间平衡树
一般来说,线段树是用来维护区间的,平衡树是用来维护权值的。
不过,既然有权值线段树,那么也绝对会有区间平衡树。
显然,权值线段树能实现的平衡树都能实现,但区间平衡树能实现的,线段树不一定都能实现。
建树
权值平衡树是按权值建的树,而区间平衡树则需要按下标建树。
其实,Fhq_Treap 的建树并不需要一个新的函数,直接将新加入的点和之前的树合并即可。
建树完之后,树的中序遍历为原数组。
for(int i=1;i<=n;i++) rot=merge(rot,new_(i));
分裂-split
按大小分裂后, 的大小为 ,剩下的点则在 中。
那么通过比较当前节点的左子树的 siz
就可以确定当前节点应该在树 还是在树 。
而且可以连带着左子树或者右子树一起确定。
代码(和按值分裂差不多):
void split(int i,int k,int &x,int &y) { if(!i){x=y=0;return;} if(T[i].tag)pushdown(i); if(k<=T[T[i].lc].siz)y=i,split(T[i].lc,k,x,T[i].lc); else x=i,split(T[i].rc,k-T[T[i].lc].siz-1,T[i].rc,y); pushup(i); }
其中的 tag
会在接下来讲解。
翻转-reverse
首先考虑一下区间翻转的弱化版:翻转整个数组。
统计奇偶性,判断正序还是倒序输出。
其实就是交换每个点的左右子树。
为什么这样是对的?
比如上图,按照中序遍历应该为 1 2 3
,翻转之后应该是 3 2 1
,也就是这个图:
感性理解一下,交换是对的。
那么怎么翻转一段区间呢?
翻转这段区间,首先要找到这段区间。
先将 按照 分裂成 两棵树,然后再将 按 分裂成 两棵树。
那么树 就代表区间 。
这时,只需要翻转 就可以了。
单次操作最差时间复杂度为 。
总复杂度 。
所以和暴力有什么区别?
码量更大?
当然不是。
稍微思考一下就可以发现,每次翻转不一定对之后的操作有影响。
看这句话是不是有点眼熟?
对,和线段树一样,加懒标。
用一个 tag
表示当前节点是否需要交换左右子节点,然后 pushdown
的时候交换左右子节点,然后下放懒标。
就像这样:
void pushdown(int i) { swap(T[i].lc,T[i].rc); T[T[i].lc].tag^=1; T[T[i].rc].tag^=1; T[i].tag=0; }
至于何时下传,也和线段树一样,在穿过节点的时候下放,就像上边的 split
,和下边的 merge
。
int merge(int x,int y) { if(!x||!y)return x|y; if(T[x].pri<T[y].pri) { if(T[x].tag)pushdown(x); T[x].rc=merge(T[x].rc,y); pushup(x);return x; } else { if(T[y].tag)pushdown(y); T[y].lc=merge(x,T[y].lc); pushup(y);return y; } }
AC Code
const int inf=1e5+7; int n,m; struct Fhq_Treap{ int lc,rc; int siz,val; unsigned pri; bool tag; }T[inf]; int cnt,rot,rx,ry,rz; #include<random> mt19937 rnd(51205); int new_(int k) { T[++cnt].pri=rnd(); T[cnt].siz=1;T[cnt].val=k; return cnt; } void pushup(int i) { T[i].siz=T[T[i].lc].siz+T[T[i].rc].siz+1; } void pushdown(int i) { swap(T[i].lc,T[i].rc); T[T[i].lc].tag^=1; T[T[i].rc].tag^=1; T[i].tag=0; } void split(int i,int k,int &x,int &y) { if(!i){x=y=0;return;} if(T[i].tag)pushdown(i); if(k<=T[T[i].lc].siz)y=i,split(T[i].lc,k,x,T[i].lc); else x=i,split(T[i].rc,k-T[T[i].lc].siz-1,T[i].rc,y); pushup(i); } int merge(int x,int y) { if(!x||!y)return x|y; if(T[x].pri<T[y].pri) { if(T[x].tag)pushdown(x); T[x].rc=merge(T[x].rc,y); pushup(x);return x; } else { if(T[y].tag)pushdown(y); T[y].lc=merge(x,T[y].lc); pushup(y);return y; } } void dfs(int i) { if(T[i].tag)pushdown(i); if(T[i].lc)dfs(T[i].lc); wr(T[i].val),putchar(' '); if(T[i].rc)dfs(T[i].rc); } int main() { n=re();m=re(); for(int i=1;i<=n;i++) rot=merge(rot,new_(i)); for(int i=1;i<=m;i++) { int l=re(),r=re(); split(rot,r,rx,rz); split(rx,l-1,rx,ry); T[ry].tag^=1; rot=merge(merge(rx,ry),rz); } dfs(rot); return 0; }
指针实现
int n,m; struct Fhq_Treap{ int siz,val; unsigned pri; bool tag; Fhq_Treap *lc,*rc; Fhq_Treap(){} Fhq_Treap(int siz,int val,unsigned pri,bool tag,Fhq_Treap* lc,Fhq_Treap* rc): siz(siz),val(val),pri(pri),tag(tag),lc(lc),rc(rc){} }*rot,*rx,*ry,*rz,*nul; #include<random> mt19937 rnd(51205); Fhq_Treap* new_(int k) { return new Fhq_Treap(1,k,rnd(),0,nul,nul); } void pushup(Fhq_Treap* &i) { i->siz=i->lc->siz+i->rc->siz+1; } void pushdown(Fhq_Treap* i) { swap(i->lc,i->rc); i->lc->tag^=1; i->rc->tag^=1; i->tag=0; } void split(Fhq_Treap* i,int k,Fhq_Treap* &x,Fhq_Treap* &y) { if(i==nul){x=y=nul;return;} if(i->tag==1)pushdown(i); if(k<=i->lc->siz)y=i,split(i->lc,k,x,i->lc); else x=i,split(i->rc,k-i->lc->siz-1,i->rc,y); pushup(i); } Fhq_Treap* merge(Fhq_Treap* x,Fhq_Treap* y) { if(x==nul)return y; if(y==nul)return x; if(x->pri<y->pri) { if(x->tag)pushdown(x); x->rc=merge(x->rc,y); pushup(x);return x; } else { if(y->tag)pushdown(y); y->lc=merge(x,y->lc); pushup(y);return y; } } void dfs(Fhq_Treap* i) { if(i->tag)pushdown(i); if(i->lc!=nul)dfs(i->lc); wr(i->val),putchar(' '); if(i->rc!=nul)dfs(i->rc); } int main() { n=re();m=re(); nul=new Fhq_Treap(0,0,0,0,0,0); rot=rx=ry=rz=nul; for(int i=1;i<=n;i++) rot=merge(rot,new_(i)); for(int i=1;i<=m;i++) { int l=re(),r=re(); split(rot,r,rx,rz); split(rx,l-1,rx,ry); ry->tag^=1; rot=merge(merge(rx,ry),rz); } dfs(rot); return 0; }
其他操作
当然,如果只能维护区间翻转,那区间平衡树的存在实在是太鸡肋了。
但是,区间平衡树的强大,远不止区间翻转。线段树支持的区间操作,区间平衡树都可以维护。
比如区间加、区间乘、区间推平、区间最值、区间求和、区间最大子段和等等等等。
就以大家最熟悉的线段树模板为例,用 Fhq_Treap 实现就是这样:
int n,m,k; struct Fhq_Treap{ int siz,val,sum,tag; unsigned pri; Fhq_Treap *lc,*rc; Fhq_Treap(int siz,int val,int sum,int tag,unsigned pri,Fhq_Treap* lc,Fhq_Treap* rc): siz(siz),val(val),sum(sum),tag(tag),pri(pri),lc(lc),rc(rc){} }*rot,*rx,*ry,*rz,*nul; #include<random> mt19937 rnd(51205); Fhq_Treap* new_(int k) { return new Fhq_Treap(1,k,k,0,rnd(),nul,nul); } void pushup(Fhq_Treap* &i) { i->siz=i->lc->siz+i->rc->siz+1; i->sum=i->lc->sum+i->rc->sum+i->val; } void pushdown(Fhq_Treap* &i) { i->lc->val+=i->tag;i->lc->tag+=i->tag; i->rc->val+=i->tag;i->rc->tag+=i->tag; i->lc->sum+=i->tag*i->lc->siz; i->rc->sum+=i->tag*i->rc->siz; i->tag=0; } void split(Fhq_Treap* i,int k,Fhq_Treap* &x,Fhq_Treap* &y) { if(i==nul){x=y=nul;return;} if(i->tag)pushdown(i); if(k<=i->lc->siz)y=i,split(i->lc,k,x,i->lc); else x=i,split(i->rc,k-i->lc->siz-1,i->rc,y); pushup(i); } Fhq_Treap* merge(Fhq_Treap* x,Fhq_Treap* y) { if(x==nul)return y; if(y==nul)return x; if(x->pri<y->pri) { if(x->tag)pushdown(x); x->rc=merge(x->rc,y); pushup(x);return x; } else { if(y->tag)pushdown(y); y->lc=merge(x,y->lc); pushup(y);return y; } } void update(int l,int r,int k) { split(rot,r,rx,rz); split(rx,l-1,rx,ry); ry->val+=k,ry->tag+=k; ry->sum+=k*ry->siz; rot=merge(merge(rx,ry),rz); } int ask(int l,int r) { split(rot,r,rx,rz); split(rx,l-1,rx,ry); int ret=ry->sum; rot=merge(merge(rx,ry),rz); return ret; } int main() { n=re();m=re(); nul=new Fhq_Treap(0,0,0,0,0,0,0); rot=rx=ry=rz=nul; for(int i=1;i<=n;i++) k=re(),rot=merge(rot,new_(k)); while(m--) { int op=re(),l=re(),r=re(); if(op==1)update(l,r,re()); else wr(ask(l,r)),putchar('\n'); } return 0; }
虽然区间平衡树是按照下标建的树,但平衡树的节点上储存的还是权值。
这么看来,其实区间平衡树的基本思想就是将维护的区间单独拎出来,然后进行维护。
其实,Splay 区间维护的基本思想也是这样的。
区间平衡树好题:[NOI2005] 维护数列。
时间复杂度证明
Splay
基本概念与储存
Splay,又叫伸展树。
它的主要思想就是将通过伸展(splay)操作将使用频率较高的点旋转到距离根节点较近的位置。
至于怎么统计使用频率,其实并不需要很复杂,直接将每一次插入或查询的点 splay 到根即可。
由于某些操作需要知道一个节点的父节点是什么,所以要维护父指针。
并且为了旋转的方便,左右子节点用一个数组表示, 表示左儿子, 表示右儿子。
siz
表示子树大小,cnt
表示当前值出现了几次。
struct Splay{ int fa,hz[2]; int siz,cnt,val; }T[inf],q0;
树旋转
学习 Splay,首先需要掌握树旋转。
单旋
将某个节点旋转到根节点,首先需要知道这个节点的父节点是谁。
而且显然,旋转前后不能破坏 BST 的性质,也就是中序遍历单调这个性质不能变。
像这样:
显然,中序遍历都是 RxByAz
。
首先,我们要知道这个点是它的父节点的什么儿子:
bool pd(int i) { if(i==T[T[i].fa].hz[0])return 0;//左儿子 else return 1;//右儿子 }
好像有点奇怪……
可以写成一行:
bool pd(int i){return i==T[T[i].fa].hz[1];}
然后根据上图,我们要旋转 B
。
B
是 A
的左儿子,所以旋转之后,A
就变成 B
的右儿子。
同时,B
的右儿子会变成 A
的左儿子。
而且,A
为 R
的右儿子,那么 B
将变为 R
的右儿子。
所以旋转操作共涉及到三组父子关系的建立。
代码实现是就是这样:
void rotate(int i) { int fa=T[i].fa,gf=T[fa].fa; int pdi=pd(i),pdf=pd(fa); T[i].fa=gf;if(gf)T[gf].hz[pdf]=i; T[fa].hz[pdi]=T[i].hz[pdi^1]; if(T[i].hz[pdi^1])T[T[i].hz[pdi^1]].fa=fa; T[i].hz[pdi^1]=fa;T[fa].fa=i; pushup(fa),pushup(i); }
在这里,我们用 i
表示当前节点,fa
表示当前节点的父亲节点,gf
表示当前节点的祖父节点。
由于 i
的子节点和祖父节点可能不存在(为 ),而在查询时可能会用到 节点,所以建立关系时需要特判一下是否为 。
pushup
和 Fhq_Treap 差不多,只不过 Splay 将相同权值储存在同一个点,需要 +cnt
而不是 +1
。
void pushup(int i) { T[i].siz=T[T[i].hz[0]].siz+T[T[i].hz[1]].siz+T[i].cnt; }
但是只有单旋的话,复杂度是错的,因此需要引入双旋。
伸展(双旋)
只有单旋的话,你写的不是 Splay,而是 Spaly
17 年安徽湖南省选也在抨击这种行为:https://www.luogu.com.cn/problem/P3721。
不过好像大多数题都没有刻意卡单旋,毕竟大多数出题人都默认大家都写双旋。
比如洛谷模板,比双旋跑得还快。
加强版倒是卡了一个点。
但如果考场上为了省这几行代码被卡,那就得不偿失了。
像 18 年 NOI 的归程,就卡了 SPFA……
splay(i,to)
,就是将节点 i
伸展到 to
位置。
spaly 是这样写:
void spaly(int i,int to) { to=T[to].fa; while(T[i].fa^to)rotate(i); if(!to)rot=i; }
很好理解,此处不再赘述。
因为我们的重点是复杂度正确的 Splay。
除去上述的两个单旋,Splay 还有四种旋转方式:
/ \ < >
看不懂?画个图:
有没有感觉上边的符号很生动形象。
对于前两种情况,称为“一字型”,需要先旋 fa
,再旋 i
;而后两种情况称为“之字形”,则需旋两次 i
。
不过,还有一种情况,就是只需要一步单旋就可以旋到 to。那么直接 rotate
即可。
写成代码就是这样:
void splay(int i,int to) { to=T[to].fa; int fa=T[i].fa; while(fa!=to) { if(T[fa].fa==to){rotate(i);break;}//最后一步单旋 if(pd(i)^pd(fa))rotate(i);//之字形 else rotate(fa);//一字型 rotate(i);fa=T[i].fa;//最后一步都是旋 i } if(!to)rot=i; }
不过,这个代码可以用三目运算符简化:
void splay(int i,int to) { to=T[to].fa; for(int fa=T[i].fa;fa!=to;rotate(i),fa=T[i].fa) if(T[fa].fa^to)rotate((pd(i)^pd(fa))?i:fa); if(!to)rot=i; }
至此,树旋转完结撒花~~
实现权值平衡树
掌握了树旋转,也就掌握了 Splay。
插入-insert
按照 BST 的性质,找到 k 所对应的节点。然后 cnt++,siz++
。
若找不到,则新建一个节点。
int new_(int k,int fa) { T[++cnt].fa=fa,T[cnt].val=k; T[cnt].siz=T[cnt].cnt=1; return cnt; }
当然,都需要将节点 splay 到根。
void insert(int k) { if(!rot){rot=new_(k,0);return;} int now=rot,fa=0; while(now) { if(k==T[now].val) { T[now].siz++,T[now].cnt++; splay(now,rot);return; } fa=now; if(k<T[now].val)now=T[now].hz[0]; else now=T[now].hz[1]; } now=new_(k,fa); T[fa].hz[k>T[fa].val]=now; splay(now,rot); }
排名-rank
与 BST 相同,左边多则查询左边,否则查询右边,顺便统计答案。
找不到则返回当前查询到的比 k 小的个数 +1
。
int ask_rnk(int k) { int now=rot,ans=0; while(now) { if(k==T[now].val) { int ret=T[T[now].hz[0]].siz; splay(now,rot); return ans+ret+1; } if(k<T[now].val)now=T[now].hz[0]; else ans+=T[T[now].hz[0]].siz+T[now].cnt,now=T[now].hz[1]; } return ans+1; }
k 小值-kth
和 Fhq_Treap 类似,但当前节点不一定只有一个 k,所以需要全部考虑。
int ask_kth(int k) { int now=rot; while(1) { if(T[T[now].hz[0]].siz+1<=k&&k<=T[T[now].hz[0]].siz+T[now].cnt) {splay(now,rot);return T[now].val;} if(k<=T[T[now].hz[0]].siz)now=T[now].hz[0]; else k-=T[T[now].hz[0]].siz+T[now].cnt,now=T[now].hz[1]; } }
前驱、后继-pre/nex
前驱后继有些繁琐:
先将 k 插入并 splay 到根节点,此时 k 的前驱为左子树的最大值,后继为右子树的最小值。
找到之后,再将 k 删除即可。
int pre() { int now=T[rot].hz[0]; if(now) { while(T[now].hz[1]) now=T[now].hz[1]; splay(now,rot); } return now; } int ask_pre(int k) { insert(k);int ret=T[pre()].val; remove(k);return ret; } int nex() { int now=T[rot].hz[1]; if(now) { while(T[now].hz[0]) now=T[now].hz[0]; splay(now,rot); } return now; } int ask_nex(int k) { insert(k);int ret=T[nex()].val; remove(k);return ret; }
删除-remove
删除操作更为繁琐……
首先,用一个 ask_rnk
将 k 所在节点 splay 到根。
如果当前节点 cnt>1
,则直接 cnt--
即可。
如果当前节点没有子节点,直接将节点清空。
如果当前节点没有左儿子,就用右儿子取代当前节点。
同理,没有右儿子,就用做儿子取代当前节点。
否则,找到当前节点的前驱节点,并 Splay 到根。
此时待删除节点没有左儿子,用其右儿子取代待删除节点即可。
void remove(int k) { ask_rnk(k);int now=rot; if(T[now].cnt>1){T[now].cnt--,T[now].siz--;return;} if(T[now].hz[0]+T[now].hz[1]==0){clear(now),rot=0;return;} if(T[now].hz[0]==0) { rot=T[now].hz[1];T[rot].fa=0; pushup(rot);return; } if(T[now].hz[1]==0) { rot=T[now].hz[0];T[rot].fa=0; pushup(rot);return; } int ls=pre(); splay(ls,rot); T[rot].hz[1]=T[now].hz[1]; T[T[now].hz[1]].fa=rot; clear(now);pushup(rot); }
其中的 clear
函数更为简单粗暴。由于使用的是结构体,可以直接赋值清零。
void clear(int i){T[i]=q0;}
AC Code
const int inf=1e5+7; int n; struct Splay{ int fa,hz[2]; int siz,cnt,val; }T[inf],q0; int rot,cnt; void clear(int i){T[i]=q0;} void pushup(int i){T[i].siz=T[T[i].hz[0]].siz+T[T[i].hz[1]].siz+T[i].cnt;} bool pd(int i){return i==T[T[i].fa].hz[1];} void rotate(int i) { int fa=T[i].fa,gf=T[fa].fa; int pdi=pd(i),pdf=pd(fa); T[i].fa=gf;if(gf)T[gf].hz[pdf]=i; T[fa].hz[pdi]=T[i].hz[pdi^1]; if(T[i].hz[pdi^1])T[T[i].hz[pdi^1]].fa=fa; T[i].hz[pdi^1]=fa;T[fa].fa=i; pushup(fa),pushup(i); } void splay(int now,int to) { to=T[to].fa; for(int fa=T[now].fa;fa!=to;rotate(now),fa=T[now].fa) if(T[fa].fa^to)rotate((pd(now)^pd(fa))?now:fa); if(!to)rot=now; } int new_(int k,int fa) { T[++cnt].fa=fa,T[cnt].val=k; T[cnt].siz=T[cnt].cnt=1; return cnt; } void insert(int k) { if(!rot){rot=new_(k,0);return;} int now=rot,fa=0; while(now) { if(k==T[now].val) { T[now].siz++,T[now].cnt++; splay(now,rot);return; } fa=now; if(k<T[now].val)now=T[now].hz[0]; else now=T[now].hz[1]; } now=new_(k,fa); T[fa].hz[k>T[fa].val]=now; splay(now,rot); } int ask_rnk(int k) { int now=rot,ans=0; while(now) { if(k==T[now].val) { int ret=T[T[now].hz[0]].siz; splay(now,rot); return ans+ret+1; } if(k<T[now].val)now=T[now].hz[0]; else ans+=T[T[now].hz[0]].siz+T[now].cnt,now=T[now].hz[1]; } return ans+1; } int ask_kth(int k) { int now=rot; while(1) { if(T[T[now].hz[0]].siz+1<=k&&k<=T[T[now].hz[0]].siz+T[now].cnt) {splay(now,rot);return T[now].val;} if(k<=T[T[now].hz[0]].siz)now=T[now].hz[0]; else k-=T[T[now].hz[0]].siz+T[now].cnt,now=T[now].hz[1]; } } int pre() { int now=T[rot].hz[0]; if(now) { while(T[now].hz[1]) now=T[now].hz[1]; splay(now,rot); } return now; } int nex() { int now=T[rot].hz[1]; if(now) { while(T[now].hz[0]) now=T[now].hz[0]; splay(now,rot); } return now; } void remove(int k) { ask_rnk(k);int now=rot; if(T[now].cnt>1){T[now].cnt--,T[now].siz--;return;} if(T[now].hz[0]+T[now].hz[1]==0){clear(now),rot=0;return;} if(T[now].hz[0]==0) { rot=T[now].hz[1];T[rot].fa=0; pushup(rot);return; } if(T[now].hz[1]==0) { rot=T[now].hz[0];T[rot].fa=0; pushup(rot);return; } int ls=pre(); splay(ls,rot); T[rot].hz[1]=T[now].hz[1]; T[T[now].hz[1]].fa=rot; clear(now);pushup(rot); } int ask_pre(int k) { insert(k);int ret=T[pre()].val; remove(k);return ret; } int ask_nex(int k) { insert(k);int ret=T[nex()].val; remove(k);return ret; } int main() { n=re(); for(int i=1;i<=n;i++) { int op=re(),k=re(); if(op==1)insert(k); if(op==2)remove(k); if(op==3)wr(ask_rnk(k)),putchar('\n'); if(op==4)wr(ask_kth(k)),putchar('\n'); if(op==5)wr(ask_pre(k)),putchar('\n'); if(op==6)wr(ask_nex(k)),putchar('\n'); } return 0; }
很抱歉,此代码没有指针版。
实现区间平衡树
在讲 Fhq_Treap 的提到过,两者实现区间操作的方式都是将区间单独拎出来。
Fhq_Treap 可以分裂,那么 Splay 怎么拎出来一个区间呢?
比如我们要操作的区间是 ,那么可以这样:
先将 所对应的点伸展到根,再将 所对应的点伸展到根的子节点。
这样, 节点的左儿子都比 大,比 小。也就是区间 。
很容易发现,这里的 splay 和权值平衡树的 splay 不太一样。
权值平衡树那里是伸展到某个节点,而此处则有个操作是伸展到某个节点的子节点。
其实也很好维护,只需要将上述 splay 稍微改一下就好了:
void splay(int i,int to) { for(int fa=T[i].fa;fa!=to;rotate(i),fa=T[i].fa) if(T[fa].fa^to)rotate((pd(i)^pd(fa))?i:fa); if(!to)rot=i; }
其实就少了一句话……
可能就有人会问了:那 splay 到根的操作怎么办?
显然,根的父节点为 ,所以 splay 到 就好了。
至于怎么找节点,用类似于区间 k 小值的方式就好了。
拎出来之后,就可以进行区间操作了。
不过,如果想要翻转区间 ,则需要用到 和 。因此,在平衡树两端加上两个哨兵,以便于全局翻转。
AC Code
const int inf=1e5+7; int n,m,a[inf]; struct Splay{ int fa,hz[2]; int siz,val,tag; }T[inf]; int rot,cnt; void pushup(int i){T[i].siz=T[T[i].hz[0]].siz+T[T[i].hz[1]].siz+1;} bool pd(int i){return T[T[i].fa].hz[1]==i;} void build(int &i,int l,int r,int fa) { if(l>r)return; int mid=(l+r)>>1;i=++cnt; T[i].val=a[mid]; T[i].fa=fa;T[i].siz=1; build(T[i].hz[0],l,mid-1,i); build(T[i].hz[1],mid+1,r,i); pushup(i); } void rotate(int i) { int fa=T[i].fa,gf=T[fa].fa; int pdi=pd(i),pdf=pd(fa); T[i].fa=gf;if(gf)T[gf].hz[pdf]=i; if(T[i].hz[pdi^1])T[T[i].hz[pdi^1]].fa=fa; T[fa].hz[pdi]=T[i].hz[pdi^1]; T[fa].fa=i;T[i].hz[pdi^1]=fa; pushup(fa),pushup(i); } void splay(int i,int to) { for(int fa=T[i].fa;fa!=to;rotate(i),fa=T[i].fa) if(T[fa].fa^to)rotate((pd(i)^pd(fa))?i:fa); if(!to)rot=i; } void pushdown(int i) { T[T[i].hz[0]].tag^=1; T[T[i].hz[1]].tag^=1; swap(T[i].hz[0],T[i].hz[1]); T[i].tag=0; } int ask_kth(int k) { int i=rot; while(1) { if(T[i].tag)pushdown(i); if(k==T[T[i].hz[0]].siz+1)return i; if(k<=T[T[i].hz[0]].siz)i=T[i].hz[0]; else k-=T[T[i].hz[0]].siz+1,i=T[i].hz[1]; } } void reverse(int l,int r) { l=ask_kth(l),r=ask_kth(r); splay(l,0);splay(r,l); int pos=T[rot].hz[1]; pos=T[pos].hz[0]; T[pos].tag^=1; } void dfs(int now) { if(!now)return; if(T[now].tag)pushdown(now); dfs(T[now].hz[0]); if((T[now].val^-1)&(T[now].val^inf)) wr(T[now].val),putchar(' '); dfs(T[now].hz[1]); } int main() { n=re();m=re(); a[1]=-1,a[n+2]=inf; for(int i=1;i<=n;i++)a[i+1]=i; build(rot,1,n+2,0); for(int i=1;i<=m;i++) { int l=re()+1,r=re()+1; reverse(l-1,r+1); } dfs(rot); return 0; }
同样,这份代码没有指针版。
其他操作
还是这个熟悉的线段树模板。
const int inf=1e5+7; int n,m,a[inf]; struct Splay{ int fa,hz[2]; int siz,val,sum,tag; }T[inf]; int rot,cnt; bool pd(int i){return T[T[i].fa].hz[1]==i;} void pushup(int i) { T[i].siz=T[T[i].hz[0]].siz+T[T[i].hz[1]].siz+1; T[i].sum=T[T[i].hz[0]].sum+T[T[i].hz[1]].sum+T[i].val; } void rotate(int i) { int fa=T[i].fa,gf=T[fa].fa; bool pdi=pd(i),pdf=pd(fa); T[i].fa=gf;if(gf)T[gf].hz[pdf]=i; if(T[i].hz[pdi^1])T[T[i].hz[pdi^1]].fa=fa; T[fa].hz[pdi]=T[i].hz[pdi^1]; T[fa].fa=i;T[i].hz[pdi^1]=fa; pushup(fa),pushup(fa); } void splay(int i,int to) { for(int fa=T[i].fa;fa!=to;rotate(i),fa=T[i].fa) if(T[fa].fa^to)rotate((pd(i)^pd(fa))?i:fa); if(!to)rot=i; } void build(int &i,int l,int r,int fa) { if(l>r)return; int mid=(l+r)>>1;i=++cnt; T[i].val=a[mid]; T[i].siz=1,T[i].fa=fa; build(T[i].hz[0],l,mid-1,i); build(T[i].hz[1],mid+1,r,i); pushup(i); } void pushdown(int i) { T[T[i].hz[0]].sum+=T[T[i].hz[0]].siz*T[i].tag; T[T[i].hz[1]].sum+=T[T[i].hz[1]].siz*T[i].tag; T[T[i].hz[0]].val+=T[i].tag;T[T[i].hz[1]].val+=T[i].tag; T[T[i].hz[0]].tag+=T[i].tag;T[T[i].hz[1]].tag+=T[i].tag; T[i].tag=0; } int kth(int k) { int i=rot; while(1) { pushdown(i); if(k==T[T[i].hz[0]].siz+1)return i; if(k<=T[T[i].hz[0]].siz)i=T[i].hz[0]; else k-=T[T[i].hz[0]].siz+1,i=T[i].hz[1]; } } void update(int l,int r,int k) { l=kth(l-1),r=kth(r+1); splay(l,0),splay(r,l); int pos=T[T[rot].hz[1]].hz[0]; T[pos].sum+=T[pos].siz*k; T[pos].val+=k;T[pos].tag+=k; } int ask(int l,int r) { l=kth(l-1),r=kth(r+1); splay(l,0),splay(r,l); int pos=T[T[rot].hz[1]].hz[0]; return T[pos].sum; } signed main() { n=re();m=re(); for(int i=1;i<=n;i++) a[i+1]=re(); build(rot,1,n+2,0); while(m--) { int op=re(),l=re()+1,r=re()+1; if(op==1)update(l,r,re()); else wr(ask(l,r)),putchar('\n'); } return 0; }
时间复杂度证明
可持久化
不会。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· Manus的开源复刻OpenManus初探
· 写一个简单的SQL生成工具