BZOJ 2179: FFT快速傅立叶
二次联通门 : BZOJ 2179: FFT快速傅立叶
权限题放题面
#include <cstdio> #include <iostream> #include <cmath> #define Max 1000005 #define rg register typedef double flo; struct vec { flo x, y; vec (flo a = 0, flo b = 0) : x (a), y (b) { } vec operator + (const vec &rhs) { return vec (x + rhs.x, y + rhs.y); } vec operator - (const vec &rhs) { return vec (x - rhs.x, y - rhs.y); } vec &operator /= (const flo &k) { return x /= k, y /= k, *this; } vec operator * (const vec &rhs) { return vec (x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x); } } a[Max], b[Max]; int rd[Max]; char s[Max]; const flo PI = acos (-1.0); void DFT (vec *a, int N, int f = 1) { rg int i, j, k; vec wn, w, x, y; for (i = 0; i < N; ++ i) if (rd[i] > i) std :: swap (a[i], a[rd[i]]); for (k = 1; k < N; k <<= 1) { wn = vec (cos (PI / k), f * sin (PI / k)); for (j = 0; j < N; j += k << 1) for (i = 0, w = vec (1, 0); i < k; ++ i, w = w * wn) x = a[j + i], y = w * a[i + j + k], a[i + j] = x + y, a[i + j + k] = x - y; } if (f == -1) for (i = 0; i < N; ++ i) a[i] /= N; } void FFT (vec *a, vec *b, int N) { int p = N << 1, L = 0; rg int i; for (N = 1; N <= p; N <<= 1) ++ L; for (i = 0; i < N; ++ i) rd[i] = (rd[i >> 1] >> 1) | ((i & 1) << (L - 1)); DFT (a, N), DFT (b, N); for (i = 0; i <= N; ++ i) a[i] = a[i] * b[i]; DFT (a, N, -1); } int c[Max]; int main (int argc, char *argv[]) { int N; scanf ("%d", &N); -- N; rg int i; scanf ("%s", s); for (i = 0; i <= N; ++ i) a[i].x = s[N - i] - '0'; scanf ("%s", s); for (i = 0; i <= N; ++ i) b[i].x = s[N - i] - '0'; FFT (a, b, N); int p = N * 2; for (i = 0; i <= p; ++ i) c[i] = (int) (a[i].x + 0.5); for (i = 0; i <= p; ++ i) if (c[i] >= 10) { c[i + 1] += c[i] / 10, c[i] %= 10; if (i == p) ++ p; } for (; c[p] == 0; -- p); for (i = p; i >= 0; -- i) printf ("%d", c[i]); putchar ('\n'); return 0; }
myj 吊打我Orz,xxy 捆起来打我Orz,myl 文化课上天Orz, lrh 姿势水平敲高Orz, hkd 特别胖Orz%%%,cys 智商感人Orz,syl zz专业Orz,我没有学上, 我们未来一片光明